Abstract:
An electrode material includes Fe-containing olivine-structured LixAyDzPO4 (wherein A represents one or more elements selected from the group consisting of Co, Mn, Ni, Cu, and Cr; D represents one or more elements selected from the group consisting of Mg, Ca, Sr, Ba, Ti, Zn, B, Al, Ga, In, Si, Ge, Sc, Y, and rare earth elements; 0
Abstract:
A lithium-ion secondary battery including a cathode, an anode, and an electrolyte, in which the cathode includes an aluminum current collector and a cathode mixture layer formed on the aluminum current collector, and an interface resistance value between the cathode mixture layer and the aluminum current collector is 1 Ω·cm2 or less.
Abstract:
An electrode material for a lithium-ion secondary battery of the present invention is a mixture including an electrode active material A made of LiFexMn1−x−yMyPO4 (0.05≦x≦0.40, 0≦y≦0.14, 1−x−y≧0, here, M represents at least one element selected from the group consisting of Mg, Ca, Co, Sr, Ba, Ti, Zn, B, Al, Ga, In, Si, Ge, and rare earth elements) and an electrode active material B made of a lithium-containing metal oxide, in which a volume change percentage due to lithium ions absorbed into and emitted from the electrode active material A is 6.2% or more and 8.3% or less.
Abstract:
A cathode material for a lithium ion secondary battery enabling diffusion of lithium ions in a two-dimensional direction or a three-dimensional direction in crystals is provided. The cathode material is formed by coating a surface of a central particle represented by-the Formula LixFe1−y−zAyMzPO4 with a carbonaceous film, in which a content of a carbon atom is 0.3% by mass or more and 3.4% by mass or less, and, in a Moessbauer spectrum obtained by Moessbauer spectroscopy, when an area intensity of a spectrum having an isomer shift value in a range of 1.0 mm/sec or more and 1.4 mm/sec or less is represented by α, and an area intensity of a spectrum having an isomer shift value in a range of 0.3 mm/sec or more and 0.7 mm/sec or less is represented by β, {β/((β+α)×(1−y−z)} is 0.01 or more and 0.1 or less.
Abstract:
An electrode material for a lithium-ion rechargeable battery of the present invention is an electrode material for a lithium-ion rechargeable battery formed by coating a surface of an electrode active material represented by General Formula LiFexMn1-x-yMyPO4 (here, M represents at least one element selected from Mg, Ca, Co, Sr, Ba, Ti, Zn, B, Al, Ga, In, Si, Ge, and rare earth elements, 0.05≦x≦1.0, 0≦y≦0.14) with a carbonaceous film, in which an angle of repose is in a range of 35° or more and 50° or less.
Abstract:
To provide a positive electrode material for lithium ion secondary batteries capable of reducing waste loss, a method of producing the same, a positive electrode for lithium ion secondary batteries and a lithium ion secondary battery which contain the above-described positive electrode material for lithium ion secondary batteries. A positive electrode material for lithium ion secondary batteries, wherein the positive electrode material includes inorganic particles whose surfaces are coated with a carbonaceous film, the inorganic particles being represented by a formula LiFexMn1-x-yMyPO4 (0.05≦x≦1.0, 0≦y≦0.14, where M represents at least one selected from the group consisting of Mg, Ca, Co, Sr, Ba, Ti, Zn, B, Al, Ga, In, Si, Ge, and rare earth elements), a specific surface area is 6 m2/g to 20 m2/g, a lightness L* is 0 to 40, and a chroma C* is 0 to 3.5.
Abstract:
A cathode material which does not easily deteriorate when used in batteries, a method for producing cathode materials, a cathode, and a lithium ion battery are provided. A cathode material including a cathode active material, in which the cathode active material is expressed by Li1+xAyDzPO4 (here, A represents one or more metal elements selected from the group consisting of Co, Mn, Ni, Fe, Cu, and Cr, D represents one or more metal elements selected from the group consisting of Mg, Ca, Sr, Ba, Ti, Zn, B, Al, Ga, In, Si, Ge, Sc, Y, and rare earth elements, 0
Abstract:
The positive electrode material for lithium ion secondary batteries includes a mixture including a positive electrode active material in which a length of a longest side of a primary particle is 1 nm or more and 1000 nm or less and a NASICON-type compound in which a length of a longest side of a primary particle is 1 nm or more and 1000 nm or less.
Abstract:
A positive electrode material for a lithium ion secondary battery includes an olivine-type phosphate-based compound represented by General Formula LixAyDzPO4 and carbon, and, in transmission electron microscopic observation of a cross section of a secondary particle that is an agglomerate of primary particles of the olivine-type phosphate-based compound, a 300-point average value of filling rates of the carbon that fills insides of voids having a diameter of 5 nm or larger that are formed by the primary particles is 30 to 70%. A is any one of Co, Mn, Ni, Fe, Cu, and Cr, D is any one of Mg, Ca, Sr, Ba, Ti, Zn, B, Al, Ga, In, Si, Ge, Sc, and Y, and x, y, and z satisfy 0.9
Abstract:
An electrode material including a carbonaceous-coated electrode active material having primary particles of an electrode active material and secondary particles that are aggregates of the primary particles, and a carbonaceous film that coats the primary particles of the electrode active material and the secondary particles that are the aggregates of the primary particles, in which a proportion of a volume of micropores having a micropore diameter of 50 nm or less in a volume of micropores having a micropore diameter of 300 nm or less, which is obtained using a nitrogen adsorption method, is 40% or more.