Abstract:
Embodiments described herein include an input device including an array of sensing pixels configured to sense an input object in a sensing region, each of the sensing pixels including a sense element. Each of the sensing pixels also includes a first transistor, wherein the first transistor includes a gate terminal connected to a row select line and a second terminal connected to the sense element. Each of the sensing pixels also includes a non-linear circuit element, wherein the non-linear circuit element includes a first terminal connected to the sense element and the second terminal of the first transistor, and wherein the non-linear circuit element further includes a second terminal connected to a column output line.
Abstract:
Embodiments herein describe an input device that includes a rectangular array of sensor electrodes connected to sensor modules that measure capacitive sensing signals corresponding to the electrodes. When performing code division multiplexing (CDM), multiple sensor electrodes are coupled to the same sensor module. As such, the sensor module generates a measurement that represents the sum of the charges on the sensor electrodes rather than an individual charge on a single sensor electrode. By repeatedly sensing multiple sensor electrodes in parallel, the input device can determine a change of capacitance for each individual sensor electrode.
Abstract:
Embodiments herein describe an input device that includes a rectangular array of sensor electrodes connected to sensor modules that measure capacitive sensing signals corresponding to the electrodes. During a charge stage, the input device applies a charging voltage to neighboring sensor electrodes in the array. The input device then drives the neighboring sensor electrodes to a reference voltage and measures the amount of charge accumulated on at least one of the sensor electrodes. Because of the parasitic capacitance between the neighboring electrodes, driving these electrodes (even the ones not being measured) to the same charging and reference voltages reduces the effect of the parasitic capacitance on the capacitive sensing measurement. Thus, during the read stage, the measured charge is affected primarily by the capacitance between the sensor electrodes and an input object (e.g., a finger).
Abstract:
Embodiments described herein include an input device including an array of sensing pixels configured to sense an input object in a sensing region. Each of the sensing pixels includes a sense element and a first transistor, wherein the first transistor includes a gate terminal connected to a row select line and a second terminal connected to the sense element. Each of the sensing pixels also includes a second transistor, wherein the second transistor includes a gate terminal connected to the sense element and the second terminal of the first transistor, and wherein the second transistor further includes a second terminal connected to a column output line.
Abstract:
This disclosure generally provides an input device that includes a plurality of sensor modules coupled to sensor electrodes arranged in a matrix that measure capacitive sensing signals corresponding to the electrodes. To mitigate the effect of capacitive coupling between a sensor electrode being sensed and its neighbors in the matrix, the input device drives the neighboring electrodes in a same manner as the selected sensor electrode so that there is little or no voltage difference between the sensor electrode being sensed and its neighbors. For example, during a drive phase, the electrode being sensed and the neighboring electrodes are coupled to the same charge voltage. During a read phase, the neighboring electrodes and the selected electrode may be coupled to the same reference voltage—e.g., ground—so there is again no voltage difference between the electrodes.
Abstract:
Embodiments described herein include a method for operating an input device by applying a charge voltage to a sense element through a first transistor that is between the sense element and a column output line and a first switch that is between the column output line and a drive voltage. The method also includes storing an electric charge on the sense element, wherein the electric charge comprises a magnitude corresponding to a feature of an input object. The method also includes driving a gate terminal of the first transistor low and disconnecting the charge voltage via the first switch. The method further includes transferring the electric charge to a feedback capacitor.