Abstract:
Embodiments described herein include an input device including an array of sensing pixels configured to sense an input object in a sensing region, each of the sensing pixels including a sense element. Each of the sensing pixels also includes a first transistor, wherein the first transistor includes a gate terminal connected to a row select line and a second terminal connected to the sense element. Each of the sensing pixels also includes a non-linear circuit element, wherein the non-linear circuit element includes a first terminal connected to the sense element and the second terminal of the first transistor, and wherein the non-linear circuit element further includes a second terminal connected to a column output line.
Abstract:
A biometric imager may comprise a plurality of sensor element traces formed in or on a sensor substrate which may comprise at least a portion of a display screen defining a biometric sensing area and forming in-active pixel locations; an auxiliary active circuit formed in or on the sensor substrate on the periphery of the biometric sensing area and in direct or indirect electrical contact with the sensor element traces; and providing a signal processing interface to a remotely located controller integrated circuit. The sensor element traces may form a portion of one dimensional linear sensor array or pixel locations in a two dimensional grid array capacitive gap biometric imaging sensor. The auxiliary circuit may provide pixel location selection or pixel signal amplification. The auxiliary circuit may be mounted on a surface of the display screen. The auxiliary circuit further comprising a separate pixel location selection controller circuit.
Abstract:
Embodiments described herein include a display device that includes a display substrate coupled to a frame. A stiffener substrate is also coupled to the frame. A first force sensing element is disposed on the stiffener substrate, and the stiffener substrate is disposed between the first force sensing element and the display substrate. The display device also includes a second force sensing element, where a distance between the first force sensing element and the second force sensing element decreases when the display substrate is deflected.
Abstract:
Embodiments described herein include an input device including an array of sensing pixels configured to sense an input object in a sensing region. Each of the sensing pixels includes a sense element and a first transistor, wherein the first transistor includes a gate terminal connected to a row select line and a second terminal connected to the sense element. Each of the sensing pixels also includes a second transistor, wherein the second transistor includes a gate terminal connected to the sense element and the second terminal of the first transistor, and wherein the second transistor further includes a second terminal connected to a column output line.
Abstract:
A biometric imager may comprise a plurality of sensor element traces formed in or on a sensor substrate which may comprise at least a portion of a display screen defining a biometric sensing area and forming in-active pixel locations; an auxiliary active circuit formed in or on the sensor substrate on the periphery of the biometric sensing area and in direct or indirect electrical contact with the sensor element traces; and providing a signal processing interface to a remotely located controller integrated circuit. The sensor element traces may form a portion of one dimensional linear sensor array or pixel locations in a two dimensional grid array capacitive gap biometric imaging sensor. The auxiliary circuit may provide pixel location selection or pixel signal amplification. The auxiliary circuit may be mounted on a surface of the display screen. The auxiliary circuit further comprising a separate pixel location selection controller circuit.
Abstract:
This disclosure generally provides an input device that includes a plurality of sensor modules coupled to sensor electrodes arranged in a matrix that measure capacitive sensing signals corresponding to the electrodes. To mitigate the effect of capacitive coupling between a sensor electrode being sensed and its neighbors in the matrix, the input device drives the neighboring electrodes in a same manner as the selected sensor electrode so that there is little or no voltage difference between the sensor electrode being sensed and its neighbors. For example, during a drive phase, the electrode being sensed and the neighboring electrodes are coupled to the same charge voltage. During a read phase, the neighboring electrodes and the selected electrode may be coupled to the same reference voltage—e.g., ground—so there is again no voltage difference between the electrodes.
Abstract:
Embodiments described herein include a method for operating an input device by applying a charge voltage to a sense element through a first transistor that is between the sense element and a column output line and a first switch that is between the column output line and a drive voltage. The method also includes storing an electric charge on the sense element, wherein the electric charge comprises a magnitude corresponding to a feature of an input object. The method also includes driving a gate terminal of the first transistor low and disconnecting the charge voltage via the first switch. The method further includes transferring the electric charge to a feedback capacitor.
Abstract:
A biometric imager may comprise a plurality of sensor element traces formed in or on a sensor substrate which may comprise at least a portion of a display screen defining a biometric sensing area and forming in-active pixel locations; an auxiliary active circuit formed in or on the sensor substrate on the periphery of the biometric sensing area and in direct or indirect electrical contact with the sensor element traces; and providing a signal processing interface to a remotely located controller integrated circuit. The sensor element traces may form a portion of one dimensional linear sensor array or pixel locations in a two dimensional grid array capacitive gap biometric imaging sensor. The auxiliary circuit may provide pixel location selection or pixel signal amplification. The auxiliary circuit may be mounted on a surface of the display screen. The auxiliary circuit further comprising a separate pixel location selection controller circuit.
Abstract:
Disclosed is a device for optical sensing, comprising: a display comprising a transparent substrate and a plurality of light emitters disposed above the transparent substrate; a transparent cover layer disposed above the display, wherein a top surface of the transparent cover layer provides an input surface for sensing an input object; and, an angled filter disposed below the transparent substrate of the display, wherein the angled filter is configured to allow light within a tolerance angle of an acceptance angle to pass through the angled filter, wherein the acceptance angle is centered around a non-zero angle relative to a normal of the input surface.
Abstract:
Embodiments herein describe an input device that includes a rectangular array of sensor electrodes connected to sensor modules that measure capacitive sensing signals corresponding to the electrodes. When performing code division multiplexing (CDM), multiple sensor electrodes are coupled to the same sensor module. As such, the sensor module generates a measurement that represents the sum of the charges on the sensor electrodes rather than an individual charge on a single sensor electrode. By repeatedly sensing multiple sensor electrodes in parallel, the input device can determine a change of capacitance for each individual sensor electrode.