Abstract:
A dry cleaning device which uses a double-cylinder type dielectric barrier discharge lamp 10a, 10b as a ultraviolet source. An outside electrode 2 in a trough-like shape is tightly contacted with the outer tube 1a of a discharge container 1, reflecting the ultraviolet light and directs it toward a workpiece 40. A cover 3 covers the outside electrode 2 for insulation of the outside electrode 2 from the ozone. In the clearance between the outer tube 1a of the discharge container 1 and an N2 introduction tube, an inside electrode 6 in a net-like shape is accommodated, nitrogen (N2) gas is caused to flow through the clearance for cooling the lamp 10a, 10b.
Abstract:
At the outer boundary of a discharge container 1, a pair of opposed electrodes 3a and 4a and a pair of opposed electrodes 3b and 4b are disposed with a specified spacing being given between them, and to each pair of opposed electrodes, a high-frequency voltage is applied from a high-frequency, high-voltage power supply 8 through a limiting resistor 6a, 7a, and a limiting resistor 6b, 7b. Across each pair of opposed electrodes, a steamer of discharge plasma corresponding to the amperage of the discharge current is generated, however, by adjusting the resistance value of the above-mentioned limiting resistor 6a, 7a, and the resistance value of the limiting resistor 6b, 7b, the discharge current is appropriately set, and thus the streamers of discharge plasma generated across the pairs of opposed electrodes are made uniform. Because the pair of opposed electrodes is disposed eccentrically with respect to the axis of the discharge container 1, a creeping discharge can be developed on the inside wall in the vicinity of the electrodes or over the entire path of discharge, resulting in the “fluctuation” of the streamer being suppressed.