Abstract:
In a method of determining a gate voltage of a display device, gamma reference voltages including a black data voltage are determined by performing a multi-time programming (MTP) operation on the display device, copy mura pattern data are provided to the display device, a luminance curve of the gate voltage is obtained by measuring luminance of the display device while gradually changing the gate voltage, a peak gate voltage is determined corresponding to a peak point of the luminance curve, and a final gate voltage is determined based on the black data voltage and the peak gate voltage.
Abstract:
A display apparatus includes a display panel, a first data driver, a second data driver, and a first capacitor. The display panel is connected to a plurality of data lines. The first data driver is connected to first data lines among the plurality of data lines, and is configured to perform a first charge sharing for the first data lines. The second data driver is connected to second data lines among the plurality of data lines, and is configured to perform a second charge sharing for the second data lines. The first capacitor is connected to the first data driver and the second data driver. Each of the first and second charge sharings is performed using the first capacitor.
Abstract:
A boosting voltage generator includes a switching circuit, a control circuit and a boosting circuit. The switching circuit is connected to a first input terminal receiving a first frame signal and a second input terminal receiving a second frame signal, and generates a first switching signal and a second switching signal based on a voltage at the first input terminal and a voltage at the second input terminal. The second frame signal has a phase opposite to that of the first frame signal. The control circuit is connected to the first and second input terminals, and selectively connects the first and second input terminals with a ground voltage based on a mode selection signal. The boosting circuit generates a first boosting voltage and a second boosting voltage based on the first switching signal, the second switching signal, a first feedback voltage and a second feedback voltage.
Abstract:
In a method of testing a display apparatus, a plurality of minimum compensation data for a plurality of grayscales, respectively and a plurality of maximum compensation data for the plurality of grayscales, respectively are determined. The display apparatus includes a display panel displaying an image having the plurality of grayscales. A plurality of grayscale compensation data corresponding to the plurality of grayscales, respectively are set based on the plurality of minimum compensation data and the plurality of maximum compensation data. A flicker characteristic with respect to the plurality of grayscales is measured based on the plurality of grayscale compensation data and test images displayed on the display panel. The flicker characteristic is optimized by selectively changing the plurality of grayscale compensation data based on the measured flicker characteristic.