Abstract:
An organic light emitting display device includes a substrate including a pixel region and a peripheral region, a first wiring, a second wiring, a third wiring, and an electrostatic protection structure including electrostatic protection diodes coupled to the first, second, and third wirings. The electrostatic protection diodes each include an active pattern, a gate electrode pattern, and a connection pattern. The active pattern is at the peripheral region of the substrate, and has a first region, a second region spaced apart from the first region, and a third region between the first and second regions. The gate electrode pattern is at the third region on the active pattern. The connection pattern is coupled to the gate electrode pattern and the active pattern and is on the gate electrode pattern, and overlaps a portion of the first region of the active pattern and a portion of the third region.
Abstract:
An organic light emitting display device includes a substrate, a first insulating layer, a power supply electrode, a second insulating layer, a first electrode, an emission layer, and a second electrode. The substrate has a display region and a transparent region. The first insulating layer is disposed on the substrate. The power supply electrode is disposed on the first insulating layer. The second insulating layer is disposed on the power supply electrode such that an edge portion of the power supply electrode is free from overlap with the second insulating layer. The first electrode is disposed on the second insulating layer and in contact with the edge portion of the power supply electrode. The emission layer is disposed on the first electrode. The second electrode is disposed on the emission layer.
Abstract:
A method of manufacturing an organic light-emitting display device is provided. The method includes forming a pixel electrode, forming a hydrophobic material layer on the pixel electrode, wherein the hydrophobic material layer includes a hydrophobic material, forming a pixel-defining layer by patterning the hydrophobic material layer, so as to expose at least a portion of the pixel electrode, and removing the hydrophobic material on the exposed portion of the pixel electrode using surface treatment.
Abstract:
A method of manufacturing an organic light-emitting display device is provided. The method includes forming a pixel electrode, forming a hydrophobic material layer on the pixel electrode, wherein the hydrophobic material layer includes a hydrophobic material, forming a pixel-defining layer by patterning the hydrophobic material layer, so as to expose at least a portion of the pixel electrode, and removing the hydrophobic material on the exposed portion of the pixel electrode using surface treatment.
Abstract:
An organic light emitting display device includes a substrate including a plurality of pixel regions and a plurality of transparent regions, thin film transistors disposed in the pixel regions, an insulation layer disposed on the thin film transistors, first electrodes electrically contacting the thin film transistors, a pixel defining layer including a black material disposed on the first electrodes, organic light emitting structures disposed on the pixel defining layer, and a second electrode disposed on the organic light emitting structures. The pixel defining layer may define an asymmetrical configuration of adjacent transparent regions disposed on opposing sides of corresponding pixel regions.
Abstract:
A display substrate includes a data line extending in a first direction, a first transistor including a first channel area overlapping the data line and a first control electrode which overlaps the first channel area and has a substantially same shape as that of the first channel area in an overlap area in which the first control electrode overlaps the first channel area, a scan line extending in a second direction crossing the first direction, a first voltage line extending in the first direction and transfers a first driving signal, a first capacitor including an extension electrode which overlaps the first control electrode and extends in the second direction from the first voltage line and a second capacitor including an overlap electrode overlapping the data line.