Abstract:
A touch panel including a base portion having a thickness that varies according to applied pressure; a first conductive pattern unit disposed on a first surface of the base portion and including first conductive patterns; and a second conductive pattern unit disposed on a second surface of the base portion opposing the first conductive pattern and including second conductive patterns that overlap with the first conductive patterns. Each of the first conductive patterns includes regions overlapping with the second conductive patterns, and in one of the overlapping regions, an amount of overlapping area between the first conductive pattern and the second conductive pattern decreases the farther away radially the overlapping area is from a center point of the overlapping region.
Abstract:
A capacitive type touch sensor, includes a plurality of driving electrodes, a plurality of sensing electrodes disposed to overlap the driving electrodes, the sensing electrodes and the driving electrodes being spaced apart from each other, a driving unit configured to supply driving signals to the respective driving electrodes, and a sensing unit configured to detect sensing signals from the sensing electrodes, wherein the driving signals supplied by the driving unit include at least one of a first driving signal having a first frequency and a second driving signal having a second frequency different from the first frequency.
Abstract:
A stylus includes a pressure detector for detecting applied pressure, a first signal generator for generating a signal of a first frequency, a second signal generator for generating a signal of a second frequency, and a controller for adjusting at least one of the first and second signal generators to control an amplitude ratio of the signal of the first frequency to the signal of the second frequency according to the applied pressure detected by the pressure detector.
Abstract:
A display panel includes a plurality of unit pixels, where each of the unit pixels has a hexagonal-shape and includes: a first sub-pixel configured to emit a first color light, where the first sub-pixel has a rhombus-shape; a second sub-pixel configured to emit a second color light, where the second sub-pixel has the rhombus-shape; and a third sub-pixel configured to emit a third color light, where the third sub-pixel has the rhombus-shape, where first sub-pixels, second sub-pixels or third sub-pixels of neighboring unit pixels in a same row are arranged to adjoin each other.
Abstract:
A method of sensing a touch is provided, the method including: generating, at a pressure detector, a first sensing signal by detecting a pressure of a touch input by a user; generating, at a position detector, a second sensing signal by detecting a position of the touch input by the user; and removing a noise of the second sensing signal based on the first sensing signal.
Abstract:
A method of sensing a touch is provided, the method including: generating, at a pressure detector, a first sensing signal by detecting a pressure of a touch input by a user; generating, at a position detector, a second sensing signal by detecting a position of the touch input by the user; and removing a noise of the second sensing signal based on the first sensing signal.
Abstract:
A stylus includes a pressure detector for detecting applied pressure, a first signal generator for generating a signal of a first frequency, a second signal generator for generating a signal of a second frequency, and a controller for adjusting at least one of the first and second signal generators to control an amplitude ratio of the signal of the first frequency to the signal of the second frequency according to the applied pressure detected by the pressure detector.
Abstract:
A touch sensing apparatus includes a touch screen panel including first electrodes along a first direction and second electrodes along a second direction crossing the first direction to form capacitances with the first electrodes, a driving circuit configured to supply a driving signal to the first electrodes; and a sensing circuit configured to detect output sensing signals from the second electrodes and recognize a touch input based on the output sensing signals. The sensing circuit includes a switching unit configured to modulate the output sensing signals by providing codes as respective input sensing signals to the second electrodes, an amplifying unit configured to amplify the modulated sensing signals, an analog-digital conversion unit configured to convert the amplified sensing signals into digital sensing signals, and a controller configured to demodulate the digital sensing signals and detect a touch input and its position from the demodulated sensing signals.
Abstract:
A display panel includes a plurality of unit pixels, where each of the unit pixels has a hexagonal-shape and includes: a first sub-pixel configured to emit a first color light, where the first sub-pixel has a rhombus-shape; a second sub-pixel configured to emit a second color light, where the second sub-pixel has the rhombus-shape; and a third sub-pixel configured to emit a third color light, where the third sub-pixel has the rhombus-shape, where first sub-pixels, second sub-pixels or third sub-pixels of neighboring unit pixels in a same row are arranged to adjoin each other.
Abstract:
A capacitive type touch sensor, includes a plurality of driving electrodes, a plurality of sensing electrodes disposed to overlap the driving electrodes, the sensing electrodes and the driving electrodes being spaced apart from each other, a driving unit configured to supply driving signals to the respective driving electrodes, and a sensing unit configured to detect sensing signals from the sensing electrodes, wherein the driving signals supplied by the driving unit include at least one of a first driving signal having a first frequency and a second driving signal having a second frequency different from the first frequency.