Abstract:
A display panel includes input power supply line coupled to a power supply at one or more edge portions of the display panel, and an output power supply line coupled to the input power supply line at a predetermined portion of the display panel. The input power supply line receives the power supply voltage, and the output power supply line receives the power supply voltage from the input power supply line. The power supply is coupled to the output power supply line at the one or more edge portions of the display panel, and receives the power supply voltage from the output power supply line to adjust a voltage level of the power supply voltage based on the power supply voltage from the output power supply line. The predetermined portion is at a location different from an edge of the display panel.
Abstract:
A method of driving a display device includes: sub-sampling an original image signal; generating a sub-image signal; generating a sub-interpolated image signal from the sub-image signal; generating an interpolated frame by realigning the sub-interpolated image signal; and displaying an image having the interpolated frame.
Abstract:
A display device includes a display panel including data lines, scan lines, and pixels, a scan driver configured to provide a scan signal to the pixels through the scan lines, a data driver configured to provide data signal to the pixels through the data lines, a voltage generator configured to provide an on-bias voltage to the pixels through the data lines, a timing controller configured to generate a first control signal that controls the data driver and a second control signal that controls the voltage generator, and a protection circuit configured to generate a first protection signal and a second protection signal and prevent an overlapping output of the data signal and the on-bias voltage based on the first control signal and the second control signal.
Abstract:
An organic light emitting display device includes pixels divided by scan lines and data lines, and including first transistors for controlling the amount of current flowing from a first power source to a second power source through organic light emitting diodes, first feedback lines and second feedback lines formed in parallel to the data lines, control lines formed in parallel to the scan lines, and a sensing unit configured to extract at least one of voltage drop of the first power source and deterioration information of the first transistor from the pixels via the first feedback lines and the second feedback lines.
Abstract:
An overcurrent detecting circuit and a leakage current detecting circuit are disclosed. In one aspect, the overcurrent detecting circuit of a display device supplying a power voltage to a display panel through a plurality of power supply lines. The overcurrent detecting circuit includes a plurality of power voltage measurement lines electrically connected to different points of the power supply lines. The overcurrent detecting circuit also includes a plurality of voltage measurement units respectively electrically connected to the power voltage measurement lines. The voltage measurement units are configured to measure the power voltage at the different points through the power voltage measurement lines and generate a plurality of measurement voltages based at least in part on the measured power voltages. The overcurrent detecting circuit further includes a controller configured to detect presence of an overcurrent based at least in part on the measurement voltages.
Abstract:
A driver integrated circuit (IC) chip includes gamma voltage generators, a line selector, and a data driver. The gamma voltage generators generate gamma voltage sets based on a reference voltage set. The line selector controls the connection between a plurality of voltage line sets for providing the reference voltage set and the gamma voltage generators based on a selection signal. The data driver converts input image data to data signals based on the gamma voltage sets.