Abstract:
An organic light emitting display device includes a substrate, a gate insulation layer, a planarization layer, a boundary pattern, and a sub-pixel structure. The substrate includes a sub-pixel region and a transparent region. The gate insulation layer is disposed on the substrate. The planarization layer is disposed in the sub-pixel region on the gate insulation layer, and exposes the transparent region. The boundary pattern covers a boundary of the sub-pixel region and the transparent region. The sub-pixel structure is disposed on the planarization layer.
Abstract:
A display panel includes an amorphous silicon gate driver in which a lower voltage than the gate-off voltage output from the gate driver is applied to an adjacent stage as a low voltage transmission signal.
Abstract:
Provided is an organic light-emitting device including a first electrode, a second electrode disposed opposite to the first electrode, an emission layer disposed between the first electrode and the second electrode, and an electron-transporting layer disposed between the emission layer and the second electrode. The electron-transporting layer includes a first electron-transporting material and a second electron-transporting material. The lowest unoccupied molecular orbital (LUMO) energy level of the first electron-transporting material (EL1) and the lowest unoccupied molecular orbital (LUMO) energy level of the second electron-transporting material (EL2) satisfy the equation 0.1 eV≦|EL1−EL2|≦0.3 eV.
Abstract:
A transparent display panel includes first through (N)-th vertical constant voltage lines (N is a natural number), first through (M)-th horizontal constant voltage line groups (M is a natural number), and a plurality of transparent pixels. The transparent pixels are disposed within a grid defined by the first through (N)-th vertical constant voltage lines and the first through (M)-th horizontal constant voltage line groups. The transparent pixels operate based on constant voltages transferred through the first through (N)-th vertical constant voltage lines and the first through (M)-th horizontal constant voltage line groups. The first through (N)-th vertical constant voltage lines include first vertical constant voltage lines and second vertical constant voltage lines. Each of the first through (M)-th horizontal constant voltage line groups includes a first horizontal constant voltage line and a second horizontal constant voltage line. The constant voltages include a first constant voltage and a second constant voltage.
Abstract:
A touch screen display is disclosed. In one aspect, the touch screen display includes a plurality of first touch electrodes each including first and second ends opposing each other and a plurality of second touch electrodes crossing the first touch electrodes. The touch screen display also includes a first voltage line providing a voltage, a first signal line providing a touch driving signal, and a plurality of first switching units respectively connected to the first touch electrodes. Each of the first switching units is electrically connected to the first voltage line, the first signal line, and the first end of a corresponding first touch electrode. Each of the first switching units alternately provides one of the voltage and the touch driving signal to the corresponding first touch electrode.
Abstract:
An organic light emitting diode includes a hole injection layer, a hole transport layer, an optical compensation layer, an emission layer, an electron transport layer and an electron injection layer. The optical compensation layer is disposed on the hole transport layer and includes a phosphorescent host material. Thus, an electron barrier on an interface between the optical compensation layer and an emission layer may be reduced. Thus, the luminance efficiency in a low gray scale area may be decreased, and the stain and roll-off phenomenon in the low gray scale area may be improved.
Abstract:
Provided is an organic light-emitting device including a first electrode, a second electrode disposed opposite to the first electrode, an emission layer disposed between the first electrode and the second electrode, and an electron-transporting layer disposed between the emission layer and the second electrode. The electron-transporting layer includes a first electron-transporting material and a second electron-transporting material. The lowest unoccupied molecular orbital (LUMO) energy level of the first electron-transporting material (EL1) and the lowest unoccupied molecular orbital (LUMO) energy level of the second electron-transporting material (EL2) satisfy the equation 0.1 eV≦|EL1−EL2|≦0.3 eV.
Abstract:
Disclosed is an organic light emitting diode device including an anode, a cathode, an emission layer between the anode and the cathode, and a buffer layer positioned between the emission layer and the anode. The buffer layer includes an oxide, fluoride, quinolate, or acetoacetate compound of an alkaline metal or an alkaline-earth metal, as well as a material having a work function of about 2.6 to about 4.5 eV. The buffer layer also has a thickness of about 30 Å to about 400 Å.