Abstract:
An organic light-emitting diode (OLED) display and method of fabricating the same are disclosed. In one aspect, the OLED display includes a first substrate including a display area and a peripheral area surrounding the display area. The display area includes a plurality of pixels each including an OLED and the peripheral area includes a signal driver electrically connected to the pixels. A conductive layer is formed over the signal driver and on opposing sides of the signal driver and a second substrate is formed over the first substrate. The OLED display further includes a first seal interposed between the first and second substrates in the peripheral area and substantially sealing the first and second substrates and a second seal surrounding the first seal and formed over the signal driver.
Abstract:
A display device includes: a first substrate overlapping a second substrate and including a display area and a non-display area; a display element disposed in the display area and between the first substrate and the second substrate; a sealing member disposed in the non-display area and between the first substrate and the second substrate; a touch unit; and a blocking member disposed in the non-display area and on the second substrate, wherein the blocking member includes blocking patterns, each of which has a first edge and a second edge, wherein the first edge extends in a first direction, and the second edge extends in a second direction different from the first direction, wherein a length of the first edge is longer than a length of the second edge, and the second edge of one blocking pattern does not overlap the second edge of another blocking pattern along the second direction.
Abstract:
A display device includes a first substrate, a driving voltage line, a common voltage line, a dam, a second substrate, and a sealant. The driving voltage transfer line is disposed on the first substrate and may transfer a driving voltage. The common voltage transfer line is disposed on the first substrate and may transfer a common voltage. The dam is disposed between the driving voltage transfer line and the common voltage transfer line, is electrically isolated from at least one of the driving voltage transfer line and the common voltage line, and is disposed on the first substrate. The second substrate overlaps the first substrate. The sealant is disposed between the first substrate and the second substrate and overlaps each of the driving voltage transfer line, the common voltage transfer line, and the dam.
Abstract:
A display device, includes: a display unit that includes a first substrate, a second substrate facing the first substrate, and a sealant combining the first and second substrates with each other, the first substrate including an active area that displays an image and a peripheral area adjacent to the active area; and an input detection unit on the second substrate, wherein the input detection unit includes: a sensing electrode on the second substrate and corresponding to the active area; a sensing pad section on the second substrate and corresponding to the peripheral area, the sensing pad section including a plurality of sensing pads electrically connected to the sensing electrode; and a pattern section on the second substrate and corresponding to the peripheral area, the pattern section overlapping the sealant and including a plurality of conductive patterns in a floating state.
Abstract:
A display device, includes: a display unit that includes a first substrate, a second substrate facing the first substrate, and a sealant combining the first and second substrates with each other, the first substrate including an active area that displays an image and a peripheral area adjacent to the active area; and an input detection unit on the second substrate, wherein the input detection unit includes: a sensing electrode on the second substrate and corresponding to the active area; a sensing pad section on the second substrate and corresponding to the peripheral area, the sensing pad section including a plurality of sensing pads electrically connected to the sensing electrode; and a pattern section on the second substrate and corresponding to the peripheral area, the pattern section overlapping the sealant and including a plurality of conductive patterns in a floating state.
Abstract:
An organic light emitting diode display comprises a substrate comprising a major surface; first, second, third and fourth electrodes positioned over the substrate; a pixel defining layer positioned over the plurality of electrodes and comprising first, second, third and fourth openings; and a spacer positioned over the pixel defining layer. The first, second, third and fourth openings overlap the first, second, third and fourth electrodes, respectively, when viewed in a viewing direction perpendicular to the major surface. The first, second, third and fourth openings comprise first, second, third and fourth corners, respectively, wherein the first, second, third and fourth corners neighbor one another when viewed in the viewing direction. When viewed in the viewing direction, the spacer comprises at least a portion placed within an imaginary polygon defined by the first, second, third and fourth corners.
Abstract:
An organic light-emitting diode (OLED) display and method of fabricating the same are disclosed. In one aspect, the OLED display includes a first substrate including a display area and a peripheral area surrounding the display area. The display area includes a plurality of pixels each including an OLED and the peripheral area includes a signal driver electrically connected to the pixels. A conductive layer is formed over the signal driver and on opposing sides of the signal driver and a second substrate is formed over the first substrate. The OLED display further includes a first seal interposed between the first and second substrates in the peripheral area and substantially sealing the first and second substrates and a second seal surrounding the first seal and formed over the signal driver.