Abstract:
A display device is capable of improving a charge rate of a pixel, the display device including: first color pixels; second color pixels; third color pixels; a gate lines connected to the first, the second and the third color pixels and extending along a first direction; a data line connected to at least one of the first, the second and the third color pixels and extending along a second direction; a first start line connected to at least one of the plurality of first color pixels; a second start line connected to at least one of the plurality of second color pixels; a third start line connected to at least one of the plurality of third color pixels; a gate driver connected to the first start line, the second start line, the third start line, and the gate lines; and a data driver connected to the data line.
Abstract:
A display device includes a first substrate including at least one first opening part defined, a pixel disposed on the first substrate, at least one first heat dissipation layer disposed in the at least one first opening part, an insulation layer disposed under the first substrate and including at least one second opening part overlapping the at least one first opening part, and a second heat dissipation layer disposed in the at least one second opening part.
Abstract:
A display device may include a data driver, a data line, a display panel that includes a first sub-pixel and a second sub-pixel both connected to the data line and respectively positioned in a first region and a second region of the display panel, and a timing controller that may receive first-type image signals and second-type image signals. The first-type image signals may correspond to a first gray-scale and may correspond to the first region. The second-type image signals may correspond to a second gray-scale and may correspond to the second region. The timing controller may use the first gray-scale to generate a compensated gray-scale if a difference between the first gray-scale and the second gray-scale is greater than a reference value. The data driver may generate a gray-scale voltage according to the compensated gray-scale and may provide the gray-scale voltage through the data line to the first sub-pixel.
Abstract:
A gate driving circuit includes a charge part which charges a charge node with a clock signal having a first high voltage for a first period, an output part which charges an output node with the first high voltage in response to a first voltage of the charge node for the first period, and outputs a second voltage of the output node as a gate signal, a first discharge part which discharges the second voltage to a first off voltage in response to a clock bar signal having a second high voltage for a second period following the first period, and a second discharge part which discharges the first voltage to the second off voltage for the second period. The second off voltage is set to one of a first level lower than a level of the first off voltage and a second level lower than the first level.
Abstract:
A display apparatus includes a display panel, a gate driver and a data driver. The display panel displays an image and includes first sub-pixels which display a first color, second sub-pixels which display a second color different from the first color, first gate lines to which only the first sub-pixels are connected, second gate lines to which only the second sub-pixels are connected, and data lines. The gate sequentially applies first gate signals only to the first gate lines during a first duration of a first frame, and sequentially applies second gate signals only to the second gate lines during a second duration of the first frame, where the second duration is subsequent to the first duration. The data driver outputs data voltages to the data lines based on input image data in synchronization with a driving sequence of the first and second gate lines.
Abstract:
A display device including a display panel, a backlight assembly to provide light to the display panel, a bottom chassis to accommodate the backlight assembly, a shield chassis connected to the bottom chassis, an insulation tape disposed between the shield chassis and the bottom chassis, the insulation tape including a bolt having grooves defined therein, and a bolt extending through the bolt area and coupling the shield chassis to the bottom chassis. The bolt area is separated into portions at the grooves by the bolt, such that the portions of the bolt area electrically insulate the bolt from the bottom chassis.
Abstract:
A display device includes a display panel, a mold frame, and graphite sheets. The mold frame includes a mold slot portion therethrough to support the display panel. The graphite sheets include a central portion on a rear surface of the display panel, and end portions passing through the mold slot portion to be on the rear surface of the mold frame. The graphite sheet is rolled and arranged in a mounting space between the display panel and a back cover, such that heat generated from the display panel may be dissipated to the outside via the graphite sheet and the back cover.
Abstract:
A display device includes a first substrate including at least one first opening part defined, a pixel disposed on the first substrate, at least one first heat dissipation layer disposed in the at least one first opening part, an insulation layer disposed under the first substrate and including at least one second opening part overlapping the at least one first opening part, and a second heat dissipation layer disposed in the at least one second opening part.
Abstract:
A display device including a display panel, a backlight assembly to provide light to the display panel, a bottom chassis to accommodate the backlight assembly, a shield chassis connected to the bottom chassis, an insulation tape disposed between the shield chassis and the bottom chassis, the insulation tape including a bolt having grooves defined therein, and a bolt extending through the bolt area and coupling the shield chassis to the bottom chassis. The bolt area is separated into portions at the grooves by the bolt, such that the portions of the bolt area electrically insulate the bolt from the bottom chassis.