Abstract:
A display apparatus includes a background image estimator configured to restructure a plurality of pixel signals of a panel image corresponding to a plurality of pixels arranged in an (n×m) matrix array into a row dataset and a column dataset and generate a row background image and a column background image with a Mura defect removed from the panel image using the row dataset and the column dataset through a Principal Component Analysis (PCA), a Mura image generator configured to generate a row binary image and a column binary image including a background and the Mura defect using differences between the panel image and the row background image and between the panel image and the column background image.
Abstract:
A spot detecting apparatus includes a photographing part and a spot detecting part. The photographing part photographs, in a first resolution, an image displayed on a display panel to output first resolution image data, and photograph, in a second resolution, the image displayed on the display panel to output second resolution image data, where the second resolution is higher than the first resolution, and the image displayed on the display panel includes a first spot greater than or equal to a reference size and a second spot less than the reference size. The spot detecting part receives the first resolution image data and the second resolution image data, and subtracts the first resolution image data from the second resolution image data to detect the second spot.
Abstract:
A display apparatus includes a background image estimator configured to restructure a plurality of pixel signals of a panel image corresponding to a plurality of pixels arranged in an (n×m) matrix array into a row dataset and a column dataset and generate a row background image and a column background image with a Mura defect removed from the panel image using the row dataset and the column dataset through a Principal Component Analysis (PCA), a Mura image generator configured to generate a row binary image and a column binary image including a background and the Mura defect using differences between the panel image and the row background image and between the panel image and the column background image.
Abstract:
A method of compensating a left-right gamma difference in a display apparatus using a vision inspection apparatus, which includes sensing sample grayscales displayed on areas defined on a display area of the display apparatus using image sensors of the vision inspection apparatus, estimating intensity values of a left reference boundary at a central area, a left boundary area, a right reference boundary area at the central area and a right boundary area, calculating a first grayscale correction value of the left boundary area such that an intensity estimation value of the left boundary area is substantially equal to an intensity estimation value of the left reference boundary area, and calculating a second grayscale correction value of the right boundary area such that an intensity estimation value of the right boundary area is substantially equal to an intensity estimation value of the right reference boundary area.
Abstract:
A method of compensating a Mura defect of a display apparatus, which includes a display area divided into an upper area and a lower area, includes calculating a sharp grayscale correction value of a predetermined sample grayscale displayed on the display apparatus, where the sharp grayscale correction value is configured to compensate a sharp horizontal Mura between the upper and lower areas, displaying a corrected sample grayscale on the display apparatus based on the predetermined sample grayscale and the sharp grayscale correction value, sensing the corrected sample grayscale displayed on each of a plurality of sample areas defined on the display area based on a Mura type, calculating an intensity profile of the sample grayscale and a target intensity profile configured to compensate the intensity profile of the sample grayscale, calculating a grayscale correction value of the sample area using the intensity profile and the target intensity profile.
Abstract:
A spot detecting apparatus includes a photographing part and a spot detecting part. The photographing part photographs, in a first resolution, an image displayed on a display panel to output first resolution image data, and photograph, in a second resolution, the image displayed on the display panel to output second resolution image data, where the second resolution is higher than the first resolution, and the image displayed on the display panel includes a first spot greater than or equal to a reference size and a second spot less than the reference size. The spot detecting part receives the first resolution image data and the second resolution image data, and subtracts the first resolution image data from the second resolution image data to detect the second spot.