Abstract:
The organic light emitting display device includes a substrate including a thin film transistor (TFT) formed thereon, the TFT including a first insulating layer disposed between an active layer and a gate electrode, and a second insulating layer disposed between the gate electrode and source and drain electrodes; a pad electrode including a first pad layer disposed on a same layer as that where the source and drain electrodes are formed, and a second pad layer on the first pad layer; a bonding assistant layer on the substrate; a third insulating layer on the bonding assistant layer and including a first opening; a pixel electrode disposed in the first opening and electrically coupled to one of the source and drain electrodes; and a fourth insulating layer on the pixel electrode to cover a peripheral end portion of the pixel electrode and defining a pixel through a second opening.
Abstract:
An organic light-emitting diode (OLED) display is disclosed. In one aspect, the OLED display includes a thin film transistor including an active layer, a gate electrode, a source electrode, and a drain electrode, a first insulating layer arranged between the active layer and the gate electrode, and a second insulating layer arranged between the gate, source, and drain electrodes. The OLED display also includes a third insulating layer covering the source and drain electrodes, wherein an opening is defined in each of the second and third insulating layers and wherein the openings substantially overlap. The OLED display further includes a pixel electrode formed in the openings defined in the second and third insulating layers and including a semi-permeable metal layer.
Abstract:
The organic light emitting display device includes a substrate including a thin film transistor (TFT) formed thereon, the TFT including a first insulating layer disposed between an active layer and a gate electrode, and a second insulating layer disposed between the gate electrode and source and drain electrodes; a pad electrode including a first pad layer disposed on a same layer as that where the source and drain electrodes are formed, and a second pad layer on the first pad layer; a bonding assistant layer on the substrate; a third insulating layer on the bonding assistant layer and including a first opening; a pixel electrode disposed in the first opening and electrically coupled to one of the source and drain electrodes; and a fourth insulating layer on the pixel electrode to cover a peripheral end portion of the pixel electrode and defining a pixel through a second opening.
Abstract:
An organic light-emitting display apparatus includes a pad electrode structure having excellent reliability due to the prevention of propagation of a crack to the pad electrode. The organic light-emitting display apparatus includes further an interlayer insulating layer on the pad electrode, a conductive barrier layer, and a planarization insulating layer. The interlayer insulating layer includes a plurality of openings that expose an upper surface of the pad electrode. The conductive barrier layer is on the plurality of openings and the interlayer insulating layer. The planarization insulating layer covers an edge of the conductive barrier layer. The planarization insulating layer is in the openings and covers an edge of the conductive barrier layer. An upper portion of the planarization insulating layer may be substantially planar with an upper portion of the conductive barrier layer on convex portions of the interlayer insulating layer.
Abstract:
An organic light-emitting display apparatus includes a thin film transistor including an active layer, a gate electrode, source and drain electrodes, a first insulating layer between the active layer and the gate electrode, and a second insulating layer between the gate electrode and the source and drain electrodes, a third insulating layer covering the source and drain electrodes, the third insulating layer being an organic insulating layer, a pixel electrode including a semi-transparent metal layer and having an end located in a trench formed around the first insulating layer, a fourth insulating layer including an opening exposing a top surface of the pixel electrode, the fourth insulating layer being an organic insulating layer, an organic light-emitting layer on the pixel electrode, and a counter electrode on the organic light-emitting layer.