Abstract:
An electronic apparatus comprising: a substrate; an organic light-emitting device disposed on the substrate; and a thin film encapsulation portion sealing the organic light-emitting device and comprising at least one organic film, wherein the organic film comprises a cured product of a composition for forming an organic film, the composition comprising a curable material and an ultraviolet (UV) absorber, wherein the curable material comprises at least one selected from an acryl-based material, a methacryl-based material, an acrylate-based material, a methacrylate-based material, a vinyl-based material, an epoxy-based material, a urethane-based material, and a cellulose-based material, and the organic light-emitting device that includes a first electrode, a second electrode facing the first electrode, an emission layer between the first electrode and the second electrode, and a hole transport region between the first electrode and the emission layer is presented. The emission layer includes a first compound represented by Formula 1, and the hole transport region includes a diamine compound:
Abstract:
Provided is an organic light-emitting device including a first compound and a second compound that offers low driving voltage and high efficiency. The organic light-emitting device includes an emission layer between a first electrode and a second electrode, and an electron transport region between the second electrode and the emission layer. The electron transport region includes the first compound. A hole transport region between the first electrode and the emission layer includes the second compound.
Abstract:
A condensed cyclic compound and an organic light-emitting device, the compound being represented by Formula 1: (A1)a1-(L1)b1-(A2)a2 wherein, in Formula 1, A1 is a group represented by Formula 2-1, below, a1 is 1, 2, or 3, and, when a1 is 2 or greater, two or more A1s are identical to or different from each other, A2 is a group represented by Formula 2-2, below, a2 is 1, 2, or 3, and, when a2 is 2 or greater, two or more A2s are identical to or different from each other,
Abstract:
An organic light-emitting device that includes a first electrode, a second electrode facing the first electrode, an emission layer between the first electrode and the second electrode, and a hole transport region between the first electrode and the emission layer is presented. The emission layer includes a first compound represented by Formula 1, and the hole transport region includes a second compound represented by Formula 2:
Abstract:
An organic light-emitting device including a first electrode; a second electrode; emission units stacked between the first electrode and the second electrode and including at least one emission layer; and charge generation layers between two adjacent emission units, the charge generation layers each including an n-type charge generation layer and p-type charge generation layer, a maximum emission wavelength of light emitted by at least one of the emission units is different from that of another emission unit, one n-type charge generation layer includes a first compound and a metal-containing material, the first compound being represented by Formula 1, the p-type charge generation layers include an amino group-free compound, at least one of the emission units further includes a hole transporting (HT)-emission auxiliary layer on a first electrode side thereof, and the HT-emission auxiliary layer includes at least one second compound, the second compound being represented by Formula 2:
Abstract:
An organic light-emitting device including a first electrode; a second electrode; and an organic layer between the first electrode and the second electrode, the organic layer including an emission layer, wherein the emission layer includes a first host represented by Formula 1 and a second host represented by one of Formulae 2-1 to 2-3:
Abstract:
An organic light-emitting device that includes a first electrode, a second electrode facing the first electrode, an emission layer between the first electrode and the second electrode, and a hole transport region between the first electrode and the emission layer is presented. The emission layer includes a first compound represented by Formula 1, and the hole transport region includes a second compound represented by Formula 2:
Abstract:
An organic light-emitting device is provided That includes: a first electrode; a second electrode facing the first electrode; m number of emission units disposed between the first electrode and the second electrode, the emission units each including at least one emission layer. m−1 charge generation layers are disposed between two adjacent emission units and each includes an n-type charge generation layer and a p-type charge generation layer. Maximum emission wavelengths of light emitted by two emission units may be different. At least one of the emission units, at least one of the charge generation layers, or any combination thereof may each include a first compound, which may be represented by Formula 1:
Abstract:
An organic light-emitting device including a first electrode; a second electrode; and an organic layer between the first electrode and the second electrode, wherein the organic layer includes an emission layer and an electron transport region, the electron transport region being between the emission layer and the second electrode; the emission layer includes a first compound represented by any one of the following Formulae 1-1 and 1-2, and the electron transport region includes a second compound represented by any one of the following Formulae 2-1 and 2-2:
Abstract:
An organic light-emitting device includes a first electrode, a second electrode facing the first electrode, and an organic layer disposed between the first electrode and the second electrode and including a dopant, a first host, and a second host.