Abstract:
A glass plate strengthening device includes: a work furnace including a preheating furnace, and a strengthening furnace below the preheating furnace; a transport module configured to transport a glass plate between the preheating furnace and the strengthening furnace in the work furnace; a separator between the preheating furnace and the strengthening furnace, configured to enter and exit the work furnace, and configured to separate or integrate the preheating furnace and the strengthening furnace during entering and exiting; a door module including a door part on a side wall of the work furnace, and configured to provide an entrance space through the door part during the entering and exiting of the separator; and a shield coupled to an outer wall of the work furnace to be adjacent to the door module, and configured to block the entrance space from an external space.
Abstract:
A refill system includes a tempering furnace, a refill furnace which stores the molten potassium nitrate obtained by melting powdered potassium nitrate, a supply unit which supplies the molten potassium nitrate to the tempering furnace, a tempering furnace side load measuring unit which measures a load amount of the molten potassium nitrate in the tempering furnace, a refill furnace side load measuring unit which measures a load amount of the molten potassium nitrate in the refill furnace, and a central control unit which checks the load amount of the molten potassium nitrate in the tempering furnace and the refill furnace in real time, and controls the supply unit to stop supplying the molten potassium nitrate to the tempering furnace when the load amount of the molten potassium nitrate in the tempering furnace is greater than or equal to a predetermined load amount.
Abstract:
The present disclosure describes a substrate loading cassette. The substrate loading cassette includes a first frame, a second frame, a first supporter coupled with the first frame, and a second supporter movably coupled with the first frame and disposed under the first supporter. The first supporter includes a first support bar and a plurality of first branch portions, and the second supporter includes a second support bar and a plurality of second branch portions. The second branch portions move in a second direction to adjust the spacing between the first and second supporters.
Abstract:
A display substrate has first and second conductive layers separated from one another by an insulation layer. The first and second conductive layers are used to integrally form on the display substrate, pixel units in a relatively central display area of the substrate and integrated gate driving circuitry as well as associated wirings thereof in one or more peripheral areas. The first and second conductive layers are covered by a first protection layer made of a first electrically insulative material. A second and supplementing protection layer is provided on top of the first protection layer. The supplementing protection layer (buffer layer) is formed of a material different from that of the first protection layer so as to provide supplemental resistance against corrosive chemical agents and supplemental resistance against formation of cracks. In one class of embodiments, the supplementing protection layer is made of a same material as used form at least one of an alignment layer, sealing layer and spacer layer of the display substrate.
Abstract:
A display substrate has first and second conductive layers separated from one another by an insulation layer. The first and second conductive layers are used to integrally form on the display substrate, pixel units in a relatively central display area of the substrate and integrated gate driving circuitry as well as associated wirings thereof in one or more peripheral areas. The first and second conductive layers are covered by a first protection layer made of a first electrically insulative material. A second and supplementing protection layer is provided on top of the first protection layer. The supplementing protection layer (buffer layer) is formed of a material different from that of the first protection layer so as to provide supplemental resistance against corrosive chemical agents and supplemental resistance against formation of cracks. In one class of embodiments, the supplementing protection layer is made of a same material as used form at least one of an alignment layer, sealing layer and spacer layer of the display substrate.
Abstract:
A display substrate has first and second conductive layers separated from one another by an insulation layer. The first and second conductive layers are used to integrally form on the display substrate, pixel units in a relatively central display area of the substrate and integrated gate driving circuitry as well as associated wirings thereof in one or more peripheral areas. The first and second conductive layers are covered by a first protection layer made of a first electrically insulative material. A second and supplementing protection layer is provided on top of the first protection layer. The supplementing protection layer (buffer layer) is formed of a material different from that of the first protection layer so as to provide supplemental resistance against corrosive chemical agents and supplemental resistance against formation of cracks. In one class of embodiments, the supplementing protection layer is made of a same material as used form at least one of an alignment layer, sealing layer and spacer layer of the display substrate.
Abstract:
A display substrate has first and second conductive layers separated from one another by an insulation layer. The first and second conductive layers are used to integrally form on the display substrate, pixel units in a relatively central display area of the substrate and integrated gate driving circuitry as well as associated wirings thereof in one or more peripheral areas. The first and second conductive layers are covered by a first protection layer made of a first electrically insulative material. A second and supplementing protection layer is provided on top of the first protection layer. The supplementing protection layer (buffer layer) is formed of a material different from that of the first protection layer so as to provide supplemental resistance against corrosive chemical agents and supplemental resistance against formation of cracks. In one class of embodiments, the supplementing protection layer is made of a same material as used form at least one of an alignment layer, sealing layer and spacer layer of the display substrate.
Abstract:
A window manufacturing system includes a first wire, a second wire spaced apart from the first wire, a controller moving the first wire up and down and the second wire up and down, and a load carrier connected to the first wire and the second wire. Window substrates are disposed on the load carrier. The controller moves the first wire and the second wire in opposite directions to each other.
Abstract:
A display substrate has first and second conductive layers separated from one another by an insulation layer. The first and second conductive layers are used to integrally form on the display substrate, pixel units in a relatively central display area of the substrate and integrated gate driving circuitry as well as associated wirings thereof in one or more peripheral areas. The first and second conductive layers are covered by a first protection layer made of a first electrically insulative material. A second and supplementing protection layer is provided on top of the first protection layer. The supplementing protection layer (buffer layer) is formed of a material different from that of the first protection layer so as to provide supplemental resistance against corrosive chemical agents and supplemental resistance against formation of cracks. In one class of embodiments, the supplementing protection layer is made of a same material as used form at least one of an alignment layer, sealing layer and spacer layer of the display substrate.