Abstract:
Disclosed is an antenna device for a portable terminal, including a circuit board having a conductive layer attached on a surface, a first slit formed by partially removing the conductive layer in a position adjacent to one side of the circuit board, the first slit extending in parallel with a lateral periphery of the circuit board, a radiation portion comprising part of the conductive layer positioned on the lateral periphery of the circuit board in one side of the first slit, and a feed line placed on the first slit and adapted to feed the radiation portion from the other side of the first slit. The radiation portion further comprises a second slit extending from the first slit to the lateral periphery of the circuit board across part of the conductive layer forming the radiation portion, and a frequency adjustment element placed on the second slit.
Abstract:
An antenna apparatus for a portable terminal is provided. The portable terminal includes a printed circuit board (PCB) having a ground surface and RF components to process a wireless signal received through at least one antenna element. A housing forms an external appearance of the portable terminal, and has a non-conductive member with a plurality of metal fragments attached thereto. At least one of the metal fragments is electrically connected to the ground surface. The metal fragments may enhance the texture and durability of the housing. Preferably, the shapes, sizes and distances separating the metal fragments are designed to minimally impact, or improve, the antenna performance provided by the at least one antenna element.
Abstract:
An antenna device of a mobile communication terminal is provided, the device including at least one radiation pattern and at least one magneto dielectric module or dielectric module installed in a selected position on the radiation pattern to tune one or more resonance frequencies of the radiation pattern according to resonance frequencies required for the terminal. The radiation pattern is selected from among one or more radiation patterns fabricated according to a usable frequency band. The one or more radiation patterns each include one or more resonance frequencies. The magneto dielectric module is selected from among one or more magneto dielectric modules fabricated for controlling the one or more resonance frequencies of the one or more radiation patterns. The dielectric module is selected from among one or more dielectric modules fabricated for controlling the one or more resonance frequencies of the one or more radiation patterns.
Abstract:
Disclosed is an antenna device for a portable terminal, including a circuit board having a conductive layer attached on a surface, a first slit formed by partially removing the conductive layer in a position adjacent to one side of the circuit board, the first slit extending in parallel with a lateral periphery of the circuit board, a radiation portion comprising part of the conductive layer positioned on the lateral periphery of the circuit board in one side of the first slit, and a feed line placed on the first slit and adapted to feed the radiation portion from the other side of the first slit. The radiation portion further comprises a second slit extending from the first slit to the lateral periphery of the circuit board across part of the conductive layer forming the radiation portion, and a frequency adjustment element placed on the second slit.