Abstract:
Light detection and ranging (LiDAR) systems and methods of operating the LiDAR systems are provided. The LiDAR system includes a light emitter configured to emit first lights of different wavelengths in a vertical direction and at different scanning angles with respect to a horizontal axis, a lens configured to converge second lights that are reflected from objects on which the first lights are emitted, and a light filter comprising an active-type device configured to adjust a transmission central wavelength of the active-type device to the different wavelengths of the first lights that are emitted from the light emitter. The LiDAR system further includes a controller configured to control an operation of the light emitter and the light filter, and a detector configured to detect light from the light emitter, and obtain information about the objects.
Abstract:
Provided is a distance measuring device and a method of measuring a distance. The distance measuring device detects light reflected by an object, generates an electrical signal based on the detected light, detects whether the electrical signal is saturated or not by comparing the electrical signal with a reference value, controls a magnitude of the electrical signal based on whether the signal is saturated, and calculates a distance to the object using the electrical signal.
Abstract:
A method of measuring a distance by using a 3-dimensional (3D) depth sensor is provided. The method may include: measuring m number of frames using light modulated at a first frequency to determine a first tentative distance from a viewpoint to an object at the first frequency, m being a positive integer; measuring n number of frames using light modulated at a second frequency to determine a second tentative distance from the viewpoint to the object at the second frequency, n being a positive integer, a sum of m and n being four; and determining a resulting distance to the object based on the first distance and the second distance.
Abstract:
Light detection and ranging (LiDAR) systems and methods of operating the LiDAR systems are provided. The LiDAR system includes a light emitter configured to emit first lights of different wavelengths in a vertical direction and at different scanning angles with respect to a horizontal axis, a lens configured to converge second lights that are reflected from objects on which the first lights are emitted, and a light filter comprising an active-type device configured to adjust a transmission central wavelength of the active-type device to the different wavelengths of the first lights that are emitted from the light emitter. The LiDAR system further includes a controller configured to control an operation of the light emitter and the light filter, and a detector configured to detect light from the light emitter, and obtain information about the objects.
Abstract:
Provided are a distance-measuring device and a method thereof. The distance-measuring device detects light reflected by an object and converts the light into electrical signals, outputs a saturation signal equal to or greater than a reference value from among the electrical signals, detects a peak using the saturation signal, and measures a distance to the object using the peak.
Abstract:
A three-dimensional (3D) image sensor device and an electronic apparatus including the 3D image sensor device are provided. The 3D image sensor device includes: a shutter driver that generates a driving voltage of a sine wave biased with a first bias voltage, from a loss-compensated recycling energy; an optical shutter that varies transmittance of reflective light reflected from a subject, according to the driving voltage, and modulates the reflective light to generate at least two optical modulation signals having different phases; and an image generator that generates 3D image data for the subject which includes depth information calculated based on a phase difference between the at least two optical modulation signals.
Abstract:
Provided are a LiDAR device and a method of operating the LiDAR device. The LiDAR device includes a light-emitting unit configured to emit modulated light onto an object, a light-receiving unit configured to receive the modulated light reflected by the object, a computation unit configured to calculate a distance to the object based on a reception signal of the modulated light provided by the light-receiving unit, a modulation unit configured to provide a modulation signal to the light-emitting unit to generate the modulated light, and a controller configured to control operations of at least one of the light-emitting unit, the light-receiving unit, the computation unit, and the modulation unit.
Abstract:
A time of flight (ToF) measuring apparatus and an image processing method for reducing blur of a depth image in the ToF measuring apparatus are provided. The apparatus senses infrared (IR) light reflected by a subject and incident via an optical shutter, models a spread characteristic of the IR light based on an intensity distribution of the sensed IR light, and acquires a sharpening filter by using the modeled spread characteristic.
Abstract:
An apparatus and method for obtaining a depth image are provided. The apparatus may include a light source configured to emit first light to a first region of an object for a first time period and emit second light to a second region of the object for a second time period, the first light and the second light respectively being reflected from the first region and the second region; and an image obtainer configured to obtain a first partial depth image based on the reflected first light, obtain a second partial depth image based on the reflected second light, and obtain a first depth image of the object based on the first partial depth image and the second partial depth image.
Abstract:
A gesture detecting apparatus including a light emitter configure to emit light towards an object, a camera configured to capture light emitted from the light emitter and reflected by the object, and a signal controller configured to control the light emitter and the camera, in which the light emitter comprises a first light and second light, at least one of which is configured to emit light having non-monotonic intensity characteristics.