Abstract:
A method of localization and mapping of a mobile robot may reduce position errors in localization and mapping using a plurality of vector field sensors. The method includes acquiring a relative coordinate in a movement space using an encoder, acquiring an absolute coordinate in the movement space by detecting intensity and direction of a signal using vector field sensors, defining a plurality of virtual cells on a surface of the movement space such that each of the cells has a plurality of nodes having predetermined positions, and updating position information about the nodes of the cells based on the relative coordinate acquired through the encoder and the absolute coordinate acquired through the vector field sensors and implementing localization and mapping in the movement space in a manner that position information of a new node is estimated while position information of a previous node is determined.
Abstract:
A method of localization and mapping of a mobile robot may reduce position errors in localization and mapping using a plurality of vector field sensors. The method includes acquiring a relative coordinate in a movement space using an encoder, acquiring an absolute coordinate in the movement space by detecting intensity and direction of a signal using vector field sensors, defining a plurality of virtual cells on a surface of the movement space such that each of the cells has a plurality of nodes having predetermined positions, and updating position information about the nodes of the cells based on the relative coordinate acquired through the encoder and the absolute coordinate acquired through the vector field sensors and implementing localization and mapping in the movement space in a manner that position information of a new node is estimated while position information of a previous node is determined.
Abstract:
Provided are a mobile robot device and a control method thereof. The mobile robot device comprises: a driving unit; an image sensor; a plurality of geomagnetic sensors; a memory for storing at least one instruction; and a processor for executing at least one instruction, wherein the processor may obtain, while the mobile robot device moves by means of the driving unit, a plurality of image data through the image sensor and obtain sensing data through the plurality of geomagnetic sensors, extract a feature point from the plurality of image data and obtain key nodes on the basis of the feature point, obtain a node sequence on the basis of the sensing data, generate a graph structure that estimates a position of the mobile robot device on the basis of the key nodes and the node sequence, and correct the graph structure based on the mobile failing in position recognition.
Abstract:
A method of classifying and collecting feature information of an area according to a robot's moving path, a robot controlled by area features, and a method and apparatus for composing a user interface using the area features are disclosed. The robot includes a plurality of sensor modules to collect feature information of a predetermined area along a moving path of the robot, and an analyzer to analyze the collected feature information of the predetermined area according to a predetermined reference range and to classify the collected feature information into a plurality of groups.
Abstract:
A method of classifying and collecting feature information of an area according to a robot's moving path, a robot controlled by area features, and a method and apparatus for composing a user interface using the area features are disclosed. The robot includes a plurality of sensor modules to collect feature information of a predetermined area along a moving path of the robot, and an analyzer to analyze the collected feature information of the predetermined area according to a predetermined reference range and to classify the collected feature information into a plurality of groups.