Abstract:
The present invention relates to a transceiving method and apparatus that enable QAM signal transmission in a filter bank multi-carrier (FMBC) communication system and provides, in particular, a transceiving method and apparatus that enable quadrature amplitude modulation (QAM) signal transmission without intrinsic interference by separating filtering between a sub-carrier having an even index and a sub-carrier having an odd index, and superimposing and transmitting sub-carriers filtered by means of separation. The thus-rendered present invention is a transmission method in the FBMC communication system, the method comprising the steps of: dividing at least two QAM signals into a plurality of groups; performing filtering on each of the plurality of groups; and superimposing and transmitting the QAM signal in the plurality of groups filtered on a time axis. The present invention relates to a transmission method and apparatus, and a corresponding reception method and apparatus.
Abstract:
A communication method and a system for converging a fifth generation (5G) communication system for supporting higher data rates beyond a fourth generation (4G) system with an internet of things (IoT) technology are provided, which may be applied to intelligent services based on the 5G communication technology and the IoT-related technology, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services. A method and an apparatus for transmitting a reference signal are provided. The method includes receiving, from a base station, a first parameter and a second parameter associated with a sound reference signal (SRS) by higher layer signaling, identifying a bandwidth for the SRS based on the first parameter and the second parameter, and transmitting, to the base station, the SRS based on the identified bandwidth for the SRS.
Abstract:
The present disclosure relates to a pre-5th-Generation (5G) or 5G communication system to be provided for supporting higher data rates Beyond 4th-Generation (4G) communication system such as Long Term Evolution (LTE). According to various embodiments of the present disclosure, an operating method of a base station includes determining at least one sub-carrier for allocating a phase tracking reference signal (PTRS), transmitting information relating to the PTRS allocation to a terminal, and based on the information, transmitting the PTRS to the terminal through the at least one sub-carrier. An apparatus and a method according to various embodiments of the present disclosure, may determine a sub-carrier for PTRS allocation and provide information relating to the PTRS allocation to a terminal, thus controlling PTRS interference caused from neighboring base stations and improving PTRS tracking performance.
Abstract:
A communication method and a system for converging a fifth generation (5G) communication system for supporting higher data rates beyond a fourth generation (4G) system with an internet of things (IoT) technology are provided, which may be applied to intelligent services based on the 5G communication technology and the IoT-related technology, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services. A method and an apparatus for transmitting a reference signal are provided. The method includes receiving, from a base station, a first parameter and a second parameter associated with a sound reference signal (SRS) by higher layer signaling, identifying a bandwidth for the SRS based on the first parameter and the second parameter, and transmitting, to the base station, the SRS based on the identified bandwidth for the SRS.
Abstract:
The present disclosure relates to a communication method and system for converging a 5th-Generation (5G) communication system for supporting higher data rates beyond a 4th-Generation (4G) system with a technology for Internet of Things (IoT). The present disclosure may be applied to intelligent services based on the 5G communication technology and the IoT-related technology, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services.The present disclosure discloses a method and an apparatus for allocating a PTRS in a next-generation communication system.
Abstract:
A communication method and system for converging a 5th-Generation (5G) communication system for supporting higher data rates beyond a 4th-Generation (4G) system with a technology for internet of things (IoT) is provided. The communication method includes applying to intelligent services based on the 5G communication technology and the IoT-related technology, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services. The disclosure relates to a method and an apparatus for allocating a phase tracking reference signal (PTRS) for estimating and compensating for phase distortion due to phase noise, Doppler effect, or synchronization error.
Abstract:
The present disclosure relates to a communication method and system for converging a 5th-Generation (5G) communication system for supporting higher data rates beyond a 4th-Generation (4G) system with a technology for Internet of Things (IoT). The present disclosure may be applied to intelligent services based on the 5G communication technology and the IoT-related technology, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services.The present disclosure discloses a method and an apparatus for allocating a PTRS in a next-generation communication system.
Abstract:
An electronic device and a method are provided. The electronic device includes communication circuitry configured to receive signals from at least one user equipment (UE), and a processor, wherein the processor may be configured to determine a reception quality of a signal obtained through the communication circuitry, obtain an offset corresponding to a channel characteristic of the signal, determine, based on the offset indicating a signal quality difference corresponding to a difference between a reception dimension (Rx dimension) at signal reception and a target Rx dimension and the reception quality, an expected reception quality corresponding to the target Rx dimension, pre-schedule the target Rx dimension and a frequency resource to the at least one UE, determine an expected throughput for the at least one UE based on the expected reception quality, determine the target Rx dimension, and receive or transmit data from or to the UE.
Abstract:
A communication method and a system for converging a fifth generation (5G) communication system for supporting higher data rates beyond a fourth generation (4G) system with an internet of things (IoT) technology are provided, which may be applied to intelligent services based on the 5G communication technology and the IoT-related technology, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services. A method and an apparatus for transmitting a reference signal are provided. The method includes receiving, from a base station, a first parameter and a second parameter associated with a sound reference signal (SRS) by higher layer signaling, identifying a bandwidth for the SRS based on the first parameter and the second parameter, and transmitting, to the base station, the SRS based on the identified bandwidth for the SRS.
Abstract:
A method of providing a phase tracking reference signal (PTRS) amongst a set of resource blocks (RBs) and an apparatus therefor are provided. The method includes selecting a particular RB amongst the set of RBs (operation S41) and arranging the PTRS in the particular RB (operation S42). The PTRS is locatable by a user equipment (UE) device from amongst the set of RBs. Also provided are a set of resource blocks (RBs), a transmission/reception point (TRP), a UE device, a system including a TRP and a UE device, a method therefor and a computer-readable storage medium. The method and apparatus relate to a pre-5th-Generation (5G) or 5G communication system to be provided for supporting higher data rates Beyond 4th-Generation (4G) communication system such as Long-Term Evolution (LTE).