Abstract:
Disclosed is a cleaning robot including: a driving unit configured to move the cleaning robot; an obstacle sensor configured to sense an obstacle; and a controller configured to reduce, if a distance between the cleaning robot and the obstacle is shorter than or equal to a reference distance, a driving speed of the cleaning robot so that the driving speed of the cleaning robot is lower than a shock absorbing speed when the cleaning robot contacts the obstacle.
Abstract:
Disclosed is a cleaning robot including: a driving unit configured to move the cleaning robot; an obstacle sensor configured to sense an obstacle; and a controller configured to reduce, if a distance between the cleaning robot and the obstacle is shorter than or equal to a reference distance, a driving speed of the cleaning robot so that the driving speed of the cleaning robot is lower than a shock absorbing speed when the cleaning robot contacts the obstacle.
Abstract:
A robot cleaner system is described including a docking station to form a docking area within a predetermined angle range of a front side thereof, to form docking guide areas which do not overlap each other on the left and right sides of the docking area, and to transmit a docking guide signal such that the docking guide areas are distinguished as a first docking guide area and a second docking guide area according to an arrival distance of the docking guide signal. The robot cleaner system also includes a robot cleaner to move to the docking area along a boundary between the first docking guide area and the second docking guide area when the docking guide signal is sensed and to move along the docking area so as to perform docking when reaching the docking area.
Abstract:
A cleaning robot and a control method thereof include a main body traveling on a floor, and a first sub-cleaning tool and a second sub-cleaning tool mounted at left and right sides of the main body so as to be protruded from the inside to the outside of the main body and selectively performing cleaning Insertion of at least one of the first sub-cleaning tool and the second sub-cleaning tool is controlled when the main body is rotated under the condition that an obstacle is detected. Side brushes of the sub-cleaning tools are inserted into the main body according to the rotation direction of the main body when the main body is rotated during traveling, thus preventing collision with the obstacle.
Abstract:
A cleaning apparatus including a main body, a dust collection unit detachably installed on the main body and provided with a plurality of inlets, through which foreign substances are introduced into the dust collection unit, and a connection hole, to which an external instrument is connected, a shutter to open and close one inlet, and a cap to open and close the connection hole. The shutter opens and closes the inlet in cooperation with one of whether or not the dust collection unit is attached to or detached from the main body and whether or not the connection hole is opened or closed.