APPARATUS AND METHOD FOR VIDEO SENSOR-BASED HUMAN ACTIVITY AND FACIAL EXPRESSION MODELING AND RECOGNITION
    2.
    发明申请
    APPARATUS AND METHOD FOR VIDEO SENSOR-BASED HUMAN ACTIVITY AND FACIAL EXPRESSION MODELING AND RECOGNITION 审中-公开
    用于视频传感器的人类活动和表情表达建模与识别的装置和方法

    公开(公告)号:US20140294295A1

    公开(公告)日:2014-10-02

    申请号:US14307342

    申请日:2014-06-17

    Abstract: An apparatus and method for human activity and facial expression modeling and recognition are based on feature extraction techniques from time sequential images. The human activity modeling includes determining principal components of depth and/or binary shape images of human activities extracted from video clips. Independent Component Analysis (ICA) representations are determined based on the principal components. Features are determined through Linear Discriminant Analysis (LDA) based on the ICA representations. A codebook is determined using vector quantization, Observation symbol sequences in the video clips am determined. And human activities are learned using the Hidden Markov Model (HMM) based on status transition and an observation matrix.

    Abstract translation: 用于人类活动和面部表情建模和识别的装置和方法基于来自时间顺序图像的特征提取技术。 人类活动建模包括确定从视频剪辑中提取的人类活动的深度和/或二进制形状图像的主要分量。 独立成分分析(ICA)表示是基于主成分确定的。 特征通过基于ICA表示的线性判别分析(LDA)来确定。 使用矢量量化确定码本,确定视频剪辑中的观察符号序列。 基于状态转换和观察矩阵,使用隐马尔可夫模型(HMM)学习人类活动。

    Apparatus and method for video sensor-based human activity and facial expression modeling and recognition
    3.
    发明授权
    Apparatus and method for video sensor-based human activity and facial expression modeling and recognition 有权
    基于视频传感器的人类活动和面部表情建模与识别的装置和方法

    公开(公告)号:US09489568B2

    公开(公告)日:2016-11-08

    申请号:US14307342

    申请日:2014-06-17

    Abstract: An apparatus and method for human activity and facial expression modeling and recognition are based on feature extraction techniques from time sequential images. The human activity modeling includes determining principal components of depth and/or binary shape images of human activities extracted from video clips. Independent Component Analysis (ICA) representations are determined based on the principal components. Features are determined through Linear Discriminant Analysis (LDA) based on the ICA representations. A codebook is determined using vector quantization, Observation symbol sequences in the video clips am determined. And human activities are learned using the Hidden Markov Model (HMM) based on status transition and an observation matrix.

    Abstract translation: 用于人类活动和面部表情建模和识别的装置和方法基于来自时间顺序图像的特征提取技术。 人类活动建模包括确定从视频剪辑中提取的人类活动的深度和/或二进制形状图像的主要分量。 独立成分分析(ICA)表示是基于主成分确定的。 特征通过基于ICA表示的线性判别分析(LDA)来确定。 使用矢量量化确定码本,确定视频剪辑中的观察符号序列。 并且使用基于状态转换的隐马尔科夫模型(HMM)和观察矩阵来学习人类活动。

Patent Agency Ranking