Abstract:
The present disclosure relates to a 5G or 6G communication system for supporting higher data transmission rate. According to various embodiments, a method performed by a serving base station in a wireless communication system may comprise: receiving information about an aggregated slot from an aggregated slot managing device; aggregating, on the basis of the information about the aggregated slot, traffic to be transmitted during a specific interval into the aggregated slot and scheduling same; determining adaptive modulation and coding (AMC) parameters separately for an aggregated slot and a non-aggregated slot; and transmitting the traffic for the aggregated slot using the determined AMC parameters.
Abstract:
The present disclosure relates to a 5th (5G) generation or pre-5G communication system for supporting a higher data transmission rate beyond a 4th (4G) generation communication system such as long term evolution (LTE). An operating method of a base station in a wireless communication system may include identifying a resource for transmitting at least one sequence for interference measurement of another base station, based on information received from a management device, and transmitting the at least one sequence through the resource, the information received from the management device may include information of the at least one sequence and the resource, and the information of the at least one sequence and the resource may be generated based on a grouping result of base stations based on an operating frequency.
Abstract:
The present disclosure relates to a pre-5th-Generation (5G) or 5G communication system to be provided for supporting higher data rates beyond 4th-Generation (4G) communication system such as long term evolution (LTE). A terminal in a wireless communication system is provided. The terminal includes a transceiver, and at least one processor configured to receive, from a base station (BS), a beam failure recovery configuration comprising at least one reference signal for identifying a candidate beam for the beam failure recovery and associated random access (RA) parameters, identify the candidate beam for the beam failure recovery using the at least one reference signal, and perform a physical random access channel (PRACH) using the at least one reference signal and the associated RA parameters on the candidate beam for the beam failure recovery.
Abstract:
A method and an apparatus for effectively determining a terminal which will transmit or receive packets in a packet-based wireless network are provided. The scheduling method of a base station of a wireless communication system includes determining a first status variable for an increment of whole network utility to data amount allocated to at least one terminal and a second status variable for an increment of the whole network utility to a scheduling chance allocated to the terminal, determining a scheduling metric based on the first and second status variables, and scheduling the at least one terminal based on the scheduling metric.
Abstract:
The present disclosure provides a method and an apparatus for scheduling traffic in a wireless communication system. A method for a base station operating in a wireless communication system according to an embodiment of the present disclosure comprises the steps of: receiving feedback information from a plurality of terminals; and scheduling the plurality of terminals based on the feedback information, wherein the step of scheduling the plurality of terminals includes a step of scheduling so as to reduce throughput of terminals in a first group of the plurality of terminals that are in an overload state, and to satisfy delay-based quality of service (QoS) of terminals in a second group of the plurality of terminals that are in under-load state. As a result, the total utility of all the terminals can be maximized, a delay-based QoS with respect to all the terminals can be achieved on average, and a minimum data rate-based QoS can be achieved on average.
Abstract:
A method for scheduling by a base station is provided. The method includes updating a first time that is required to complete ongoing data transmission with respect to terminals to which the base station is transmitting the data for a predetermined period, updating a second time that is delayed from a scheduled data transmission completion time with respect to the terminals whenever the data transmission is completed, determining priority values on the basis of the updated first time and the updated second time with respect to the terminals for the predetermined period, and performing the scheduling of the resources with respect to one or more of the terminals on the basis of the determined priority values for the predetermined period.