Abstract:
An antenna device of a portable terminal including conductive components is provided. The antenna device includes a first radiator connected to a power feeding unit of the portable terminal and a second radiator connected to each of the power feeding unit and a ground part of the portable terminal. At least one of the conductive components is connected to at least one the first radiator and the second radiator. The conductive components may be used as a radiator of the antenna device such that the antenna device may be easily installed within an inner space of a miniaturized and lightened portable terminal and the inner space of the portable terminal may be efficiently used.
Abstract:
An antenna device of a portable terminal including conductive components is provided. The antenna device includes a first radiator connected to a power feeding unit of the portable terminal and a second radiator connected to each of the power feeding unit and a ground part of the portable terminal. At least one of the conductive components is connected to at least one the first radiator and the second radiator. The conductive components may be used as a radiator of the antenna device such that the antenna device may be easily installed within an inner space of a miniaturized and lightened portable terminal and the inner space of the portable terminal may be efficiently used.
Abstract:
An antenna device of a portable terminal including conductive components is provided. The antenna device includes a first radiator connected to a power feeding unit of the portable terminal and a second radiator connected to each of the power feeding unit and a ground part of the portable terminal. At least one of the conductive components is connected to at least one the first radiator and the second radiator. The conductive components may be used as a radiator of the antenna device such that the antenna device may be easily installed within an inner space of a miniaturized and lightened portable terminal and the inner space of the portable terminal may be efficiently used.
Abstract:
An antenna device of a mobile communication terminal is provided, the device including at least one radiation pattern and at least one magneto dielectric module or dielectric module installed in a selected position on the radiation pattern to tune one or more resonance frequencies of the radiation pattern according to resonance frequencies required for the terminal The radiation pattern is selected from among one or more radiation patterns fabricated according to a usable frequency band. The one or more radiation patterns each include one or more resonance frequencies. The magneto dielectric module is selected from among one or more magneto dielectric modules fabricated for controlling the one or more resonance frequencies of the one or more radiation patterns. The dielectric module is selected from among one or more dielectric modules fabricated for controlling the one or more resonance frequencies of the one or more radiation patterns.
Abstract:
The present disclosure relates to a pre-5th-Generation (5G) or 5G communication system to be provided for supporting higher data rates beyond 4th-Generation (4G) communication system such as long-term evolution (LTE). A phase shifter device according to various embodiments of the present disclosure may include: a first board configured to comprise a phase changing rail; and a second board configured to comprise an input rail connected to an input port, a first output rail connected to a first output port, a second output rail connected to a second output port, and a connection rail connecting the first output rail with the second output rail. The first board may be disposed to be spaced a predetermined distance apart from the second board so as to face and overlay the second board. The phase of a signal passing through a first section of the connection rail may vary by a first value depending on the rotation of the first board. The signal may be divided into a first signal transmitted to the first output port and a second signal transmitted to the second output port.
Abstract:
A phase shifter is disclosed and includes a first substrate comprising a phase change line; and a second substrate comprising an input line connected to an input port, a first output line connected to a first output port, a second output line connected to a second output port, and a connection line connecting the first output line and the second output line. The first substrate is disposed to face the second substrate and to be overlaid at a predetermined distance from the second substrate. A phase of a signal passing through a first portion of the phase change line changes by a first value according to a movement of the first substrate. The signal is branched into a first signal to be transmitted to the first output port and a second signal to be transmitted to the second output port.