摘要:
A vFET includes a first impurity region doped with first impurities at an upper portion of the substrate. A first diffusion control pattern is formed on the first impurity region. The first diffusion control pattern is configured to control the diffusion of the first impurities. A channel extends in a vertical direction substantially orthogonal to an upper surface of the substrate. A second impurity region is doped with second impurities on the channel. A second diffusion control pattern is between the channel and the second impurity region. The second diffusion control pattern is configured to control the diffusion of the second impurities. A gate structure is adjacent to the channel.
摘要:
The present disclosure relates to a sensor network, Machine Type Communication (MTC), Machine-to-Machine (M2M) communication, and technology for Internet of Things (IoT). The present disclosure may be applied to intelligent services based on the above technologies, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services. Disclosed is a method for operating a mobile terminal, including detecting a movement of the mobile terminal and generating a message requesting a second service device to play contents being played by a first service device, and when the second service device is available, sending at least one of the generated message, content information, connectivity information, and functionality information to at least one of the second service device and a contents source device which provides the contents.
摘要:
Provided is a semiconductor device to which a pattern structure for performance improvement is applied. The semiconductor device includes first and second active regions spaced apart from each other in a first direction with an isolation layer interposed therebetween, a first normal gate formed on the first active region to extend in a second direction crossing the first direction, a first dummy gate having a portion overlapping with one end of the isolation layer and the other portion overlapping with the first active region and spaced apart from the first normal gate in the first direction, a second dummy gate having a portion overlapping with the other end of the isolation layer and the other portion overlapping with the second active region, a first normal source/drain contact formed on a source/drain region between the first normal gate and the first dummy gate, and a dummy contact formed on the isolation layer so as not to overlap with the first and second dummy gates and having a different size from the first normal source/drain contact.