Abstract:
An optical device and a light detection and ranging (LiDAR) device each including a heater combined temperature sensor are disclosed. The optical device including the heater combined temperature sensor may include a heater, an analog-to-digital converter (ADC) configured to measure a voltage of the heater, a memory storing a measurement value, and a micro-controller configured to estimate a temperature of the heater based on relationship between the measurement value and the temperature.
Abstract:
Provided is a distance measuring method and device for selecting an optimum peak detection signal from among a plurality of peak detection signals, based on a level of at least one of a plurality of amplified electrical signals, and measuring a distance to an object by using the selected optimum peak detection signal.
Abstract:
A lidar device includes a light source configured to emit a laser pulse to an object, a light receiver configured to receive the laser pulse reflected by the object, a first periodic wave generator configured to generate a first periodic wave when the light source emits the laser pulse and generate a second periodic wave when the light source receives the laser pulse, and a first comparator configured to compare a phase of the first periodic wave and a phase of the second periodic wave to each other. The lidar device calculates a distance between the lidar device and the object based on a phase difference determined by the first comparator.
Abstract:
An induction heating type fusing device and an image forming apparatus including the fusing device. The fusing device includes a magnetic flux generator and a compressing roller outside a fusing belt, first and second fusing rollers and a nip guide inside the fusing belt. The compressing roller compresses against the first and second fusing rollers and the nip guide to form nips, while the fusing belt is disposed between the compressing roller and the first and second fusing rollers and the nip guide.
Abstract:
An optical scanner includes at least one light source configured to emit light, a steering unit configured to perform scanning in a first direction based on the light emitted from the at least one light source, and a polygon mirror configured to perform, by using the light output from the steering unit, scanning in a second direction different than the first direction based on a rotation of the polygon mirror. The steering unit includes a plurality of first prisms, and each of the plurality of first prisms includes an incident facet configured to pass the light emitted from the at least one light source, and an output facet configured to refract and output the light. The polygon mirror includes a plurality of reflective facets, and each of the plurality of reflective facets is configured to that reflect the light output from the steering unit.
Abstract:
Light detection and ranging (LiDAR) systems and methods of operating the LiDAR systems are provided. The LiDAR system includes a light emitter configured to emit first lights of different wavelengths in a vertical direction and at different scanning angles with respect to a horizontal axis, a lens configured to converge second lights that are reflected from objects on which the first lights are emitted, and a light filter comprising an active-type device configured to adjust a transmission central wavelength of the active-type device to the different wavelengths of the first lights that are emitted from the light emitter. The LiDAR system further includes a controller configured to control an operation of the light emitter and the light filter, and a detector configured to detect light from the light emitter, and obtain information about the objects.
Abstract:
Provided are a distance-measuring device and a method thereof. The distance-measuring device detects light reflected by an object and converts the light into electrical signals, outputs a saturation signal equal to or greater than a reference value from among the electrical signals, detects a peak using the saturation signal, and measures a distance to the object using the peak.
Abstract:
An aspect of the present disclosure is to provide a display apparatus capable of performing an information display function and a mirror function. Another aspect of the present disclosure is to provide a display apparatus of displaying a predetermined object in a turned-off state. Another aspect of the present disclosure is to provide a display apparatus including partition walls disposed in space between electrodes of a cholesteric Liquid Crystal Display (LCD) device. Another aspect of the present disclosure is to provide a transparent display apparatus with improved visibility using cholesteric liquid crystals. Disclosed is a display apparatus includes a reflective layer; and a liquid crystal layer disposed in front of the reflective layer, and configured to be converted between a transmissive mode for transmitting outside light, a display mode for reflecting outside light to display an object, and a transflective mode for transmitting outside light and reflecting outside light at a predetermined area.
Abstract:
A light detection and ranging (LiDAR) device includes: a light transmitter that generates a plurality of beams to be transmitted at different times, respectively; and splits each of the plurality of beams into a plurality of sub-beams and transmit the plurality of sub-beams to a plurality of subregions of a target region at each of the different times; a light receiver including: a plurality of photodetection pixels, each of which includes a photodetection element and a circuit element configured to process an output signal of the photodetection element; and a driving lens that is located on each of the plurality of photodetection pixels and moves to focus the plurality of sub-beams that are reflected from the plurality of subregions of the target region, on the photodetection element; and a processor that performs time-division driving on the light transmitter and control a movement of the driving lens.
Abstract:
Light detection and ranging (LiDAR) systems and methods of operating the LiDAR systems are provided. The LiDAR system includes a light emitter configured to emit first lights of different wavelengths in a vertical direction and at different scanning angles with respect to a horizontal axis, a lens configured to converge second lights that are reflected from objects on which the first lights are emitted, and a light filter comprising an active-type device configured to adjust a transmission central wavelength of the active-type device to the different wavelengths of the first lights that are emitted from the light emitter. The LiDAR system further includes a controller configured to control an operation of the light emitter and the light filter, and a detector configured to detect light from the light emitter, and obtain information about the objects.