-
公开(公告)号:US10977509B2
公开(公告)日:2021-04-13
申请号:US15926161
申请日:2018-03-20
Applicant: SAMSUNG ELECTRONICS CO., LTD
Inventor: Hao Feng , Jae-Joon Han , Changkyu Choi , Chao Zhang , Jingtao Xu , Yanhu Shan , Yaozu An
Abstract: An image processing method implemented by a processor includes receiving an image, acquiring a target image that includes an object from the image, calculating an evaluation score by evaluating a quality of the target image, and detecting the object from the target image based on the evaluation score.
-
公开(公告)号:US10902244B2
公开(公告)日:2021-01-26
申请号:US15922237
申请日:2018-03-15
Applicant: Samsung Electronics Co., Ltd.
Inventor: Yaozu An , Jae-Joon Han , Changkyu Choi , Chao Zhang , Hao Feng , Jingtao Xu , Yanhu Shan
Abstract: A processor implemented image processing method includes acquiring a facial image by performing a face detection on an image, performing a quality assessment on the facial image using a preset facial image regression model, and determining a quality level of the facial image based on the quality assessment.
-
公开(公告)号:US10679083B2
公开(公告)日:2020-06-09
申请号:US15921740
申请日:2018-03-15
Applicant: Samsung Electronics Co., Ltd.
Inventor: Jingtao Xu , ByungIn Yoo , Jae-Joon Han , Chao Zhang , Hao Feng , Yanhu Shan , Yaozu An , Changkyu Choi
IPC: G06K9/00
Abstract: Disclosed is a liveness test method and apparatus. A liveness test apparatus determines a pre-liveness score based on a plurality of sub-images acquired from an input image, determines a post-liveness score based on a recognition model for recognizing an object included in the input image, and determines a liveness of the object based on any one or any combination of the pre-liveness score and the post-liveness score.
-
公开(公告)号:US11908117B2
公开(公告)日:2024-02-20
申请号:US17227704
申请日:2021-04-12
Applicant: SAMSUNG ELECTRONICS CO., LTD.
Inventor: Hao Feng , Jae-Joon Han , Changkyu Choi , Chao Zhang , Jingtao Xu , Yanhu Shan , Yaozu An
IPC: G06T7/00 , G06T7/73 , G06V10/20 , G06V10/98 , G06V40/16 , G06F18/214 , G06V10/774 , G06V10/46
CPC classification number: G06T7/0002 , G06F18/2148 , G06T3/4007 , G06T7/73 , G06V10/255 , G06V10/7747 , G06V10/993 , G06V40/171 , G06T2207/30168 , G06V10/467
Abstract: An image processing method implemented by a processor includes receiving an image, acquiring a target image that includes an object from the image, calculating an evaluation score by evaluating a quality of the target image, and detecting the object from the target image based on the evaluation score.
-
公开(公告)号:US11138455B2
公开(公告)日:2021-10-05
申请号:US16861497
申请日:2020-04-29
Applicant: Samsung Electronics Co., Ltd.
Inventor: Jingtao Xu , ByungIn Yoo , Jae-Joon Han , Chao Zhang , Hao Feng , Yanhu Shan , Yaozu An , Changkyu Choi
IPC: G06K9/00
Abstract: Disclosed is a liveness test method and apparatus. A liveness test apparatus determines a pre-liveness score based on a plurality of sub-images acquired from an input image, determines a post-liveness score based on a recognition model for recognizing an object included in the input image, and determines a liveness of the object based on any one or any combination of the pre-liveness score and the post-liveness score.
-
公开(公告)号:US10963676B2
公开(公告)日:2021-03-30
申请号:US15842190
申请日:2017-12-14
Applicant: SAMSUNG ELECTRONICS CO., LTD.
Inventor: Biao Wang , Bing Yu , Chang Kyu Choi , Deheng Qian , Jae-Joon Han , Jingtao Xu , Yaozu An
Abstract: An image processing apparatus, includes an image classifier configured to determine whether an input image is a low-quality image or a high-quality image; and an image evaluator configured to determine a first predetermined number of clearest images from a plurality of low-quality images determined by the image classifier.
-
公开(公告)号:US10726244B2
公开(公告)日:2020-07-28
申请号:US15833224
申请日:2017-12-06
Applicant: Samsung Electronics Co., Ltd.
Inventor: Jingtao Xu , Biao Wang , Yaozu An , ByungIn Yoo , Changkyu Choi , Deheng Qian , Jae-Joon Han
Abstract: A method of detecting a target includes determining a quality type of a target image captured using a camera, determining a convolutional neural network of a quality type corresponding to the quality type of the target image in a database comprising convolutional neural networks, determining a detection value of the target image based on the convolutional neural network of the corresponding quality type, and determining whether a target in the target image is a true target based on the detection value of the target image.
-
-
-
-
-
-