Abstract:
The present disclosure provides an optical unit with shake correction function capable of preventing a thrust receiving member, which fixes a sphere, from falling off from the movable body in an optical axis direction. According to some embodiments of the present disclosure, a thrust receiving member to which a first sphere is fixed is held by a holding portion formed of the cutout recess provided in a fixed body. A bottom wall surface of the holding portion makes contact with a bent plate portion of the thrust receiving member from −Z direction side. Further, locked surface parts provided on a pair of side wall surfaces of a holding portion make contact, from +Z direction side, with a pair of locking plate portions protruding from a bent plate portion in circumferential direction in the thrust receiving member.
Abstract:
A movable body may be in a unit with a shake correction function having a movable body, a fixed body provided with a support mechanism structured to swingably support the movable body, a shake correction drive mechanism, and an elastic support member which connects the movable body with the fixed body. A tilt adjusting method for the movable body may include setting a state that a force having a component on an opposite direction to a driving force of the shake correction drive mechanism is acted on the movable body, adjusting the driving force so that a tilt direction of the movable body is substantially coincided with a target direction, and connecting the movable body with the fixed body through the elastic support member in a state that the tilt direction of the movable body is substantially coincided with the target direction.
Abstract:
A manufacturing method of an actuator having a support body, a movable body, a viscoelastic member adhesively bonded to one side member of the support body and the movable body by a first adhesive layer, and a magnetic drive circuit structured to relatively move the movable body may include, for adhesively bonding the viscoelastic member to the one side member by the first adhesive layer, a first step in which the viscoelastic member is disposed on a side of one face of a first jig, a second step in which the viscoelastic member and the one side member are overlapped with each other through an adhesive, a third step in which the adhesive is hardened to adhesively bond the one side member and the viscoelastic member to each other by the first adhesive layer, and a fourth step in which the first jig is separated from the viscoelastic member.
Abstract:
An actuator includes a support body, a movable body, a connection body, and a magnetic drive mechanism having a coil and a magnet for relatively moving the support body and the movable body. A winding part of the coil includes effective side portions, a first curved side portion connecting one side ends of the effective side portions, and a second curved side portion connecting the other side ends of the effective side portions. The magnet faces the effective side portions of the coil. A yoke fixed to the magnet includes a first yoke, a second yoke, a one side connection yoke and the other side connection yoke connecting the first yoke with the second yoke, and the one side connection yoke and the other side connection yoke are provided at positions so as not to overlap with the effective side portions and the magnet.
Abstract:
An actuator and a tactile device are provided. In the actuator, a gel member is disposed in a portion where a support body and a movable body face each other. The gel member is attached to the movable body and the support body by a first adhesive layer and a second adhesive layer. The gel member includes a first portion and a second portion having a higher hardness than an intermediate portion on a first adhesive layer side and a second adhesive layer side from the intermediate portion. If the thicknesses of the first adhesive layer and the second adhesive layer are changed, a spring constant of the gel member is changed. The first adhesive layer and the second adhesive layer are made to appropriate thicknesses. The gel member, the first adhesive layer and the second adhesive layer are addition reaction types, and the base polymers thereof are the same.
Abstract:
A coil unit may include a coil in a substantially rectangular frame shape; and a coil holding member. A thickness direction of the coil may be perpendicular to a long side of the coil and a short side of the coil. An outer peripheral face of the coil holding member may include an abutting face in a flat shape with which the coil is abutted. A protruded part may be formed formed so as to protrude from the abutting face to an outer side of the coil holding member. A protruded part end face parallel to the abutting face may be formed on a tip end side of the protruded part in a protruding direction of the protruded part. A distance between the abutting face and the protruded part end face may be equal to a thickness of the coil.
Abstract:
A coil unit may include an even number of coils comprising a first coil and a second coil; and a coil holding member which holds the even number of the coils. An outer peripheral face of the coil holding member may include a side-face pair comprising a first side face and a second side face which are substantially parallel to each other. The first side face may be formed with a first protruded part around which the first coil is wound, the first protruded part being protruded to an outer peripheral side with respect to the coil holding member. The second side face may be formed with a second protruded part around which the second coil is wound, the second protruded part being protruded to an outer peripheral side with respect to the coil holding member. The first coil and the second coil may be structured from one conducting wire.
Abstract:
An actuator includes a movable body having a magnet, a support body having a coil, and a power feeding board with which two lead-out wires extended from a winding part of the coil are connected. The coil includes a first air core coil and a second air core coil. The first air core coil has a first winding part, a first inner side lead-out wire, and a first outer side lead-out wire. The second air core coil has a second winding part whose winding direction is the same as the first winding part and which is overlapped with the first winding part, a second inner side lead-out wire which is extended from the second winding part and whose tip end portion is electrically connected with a tip end portion of the first inner side lead-out wire, and a second outer side lead-out wire extended from the second winding part.
Abstract:
A coil unit may include coil holding member configured to hold a coil; and a coil held by the coil holding member and formed by a conducting wire in a wound state. A direction perpendicular to a length direction of the conducting wire is a thickness direction of the coil. The coil holding member may include an abutment surface configured to abut against one end surface in the thickness direction of the coil, a convex unit protruding from the abutment surface and around which the conducting wire is wound, and a coil pressing unit extending from a front end surface of the convex unit and configured to press the other end surface in the thickness direction of the coil.
Abstract:
A coil unit may include an even number of coils comprising a first coil and a second coil; and a coil holding member which holds the even number of the coils. An outer peripheral face of the coil holding member may include a side-face pair comprising a first side face and a second side face which are substantially parallel to each other. The first side face may be formed with a first protruded part around which the first coil is wound, the first protruded part being protruded to an outer peripheral side with respect to the coil holding member. The second side face may be formed with a second protruded part around which the second coil is wound, the second protruded part being protruded to an outer peripheral side with respect to the coil holding member. The first coil and the second coil may be structured from one conducting wire.