摘要:
Provided are a method, system, and program generating user defined marking settings to print marks to control post-processing devices. A user interface is generated to enable user input to define at least one marking setting comprising a name of the marking setting, a dimension of a marking, and a location of the marking on the print medium. Marking settings control a printer to output markings on a print medium. The outputted markings on the print medium control at least one post processor device to perform post processing operations on the print medium. User input is received from the user interface defining at least one marking setting. The user defined at least one marking setting is stored with an existing set of marking settings to control the printer.
摘要:
A print controller, methods, and software are disclosed. A print controller of the invention includes applications, a parameter manager, and a notification system. The applications register with parameter manager those parameters for which they want to be notified when a change occurs. As part of the registration, the applications designate a callback identifier (CID) for each of the parameters, where an individual CID may be associated with a single parameter or a plurality of related parameters. Responsive to receiving an indication of changes to one or more of the parameters, the notification system identifies the applications registered to be notified of changes to the parameters, and identifies the CIDs associated with the parameters that have changed. The notification system then transmits one or more notification messages, including the identified CIDs for the changed parameters, to each application that is registered.
摘要:
A system is disclosed. The system includes at least one physical memory device to store drop size logic and one or more processors coupled with the at least one physical memory device to execute the drop size logic to receive first ink drop size data for each of a plurality of color planes associated with a first halftone design, generate first ink drop count data for each of the plurality of color planes based on the first halftone design and print job data, generate second ink drop count data for each of the plurality of color planes based on a second halftone design and the print job data and generate second ink drop size data for each of the plurality of color planes associated with the second halftone design based on the first ink drop count data, the first ink drop size data and the second ink drop count data.
摘要:
A system is disclosed. The system comprises one or more print controllers to generate print interrupt instructions in response to receiving a web splice signal indicating that a web splice on a web print medium has been detected, wherein the print interrupt instructions indicate a first side sheet image and a second side sheet image within a print job to pause prior to stopping printing, wherein the print interrupt instructions comprise gap instructions to open a first printhead gap at the first print engine and to open a second printhead gap at the second print engine, control printing of the first side sheet image on a first side of a web at a first print engine based on the print interrupt instructions, control printing of the second side sheet image to a second side of the web at a second print engine based on the print interrupt instructions, wherein the print interrupt instructions are generated based on a determination of an interrupted first side sheet image to be paused prior to opening the first printhead gap and a determination of an interrupted second side sheet image to be paused prior to opening the second printhead gap.
摘要:
A system is disclosed. The system includes at least one physical memory device to store drop size logic and one or more processors coupled with the at least one physical memory device to execute the drop size logic to receive first ink drop size data for each of a plurality of color planes associated with a first halftone design, generate first ink drop count data for each of the plurality of color planes based on the first halftone design and print job data, generate second ink drop count data for each of the plurality of color planes based on a second halftone design and the print job data and generate second ink drop size data for each of the plurality of color planes associated with the second halftone design based on the first ink drop count data, the first ink drop size data and the second ink drop count data.
摘要:
A system is disclosed. The system includes at least one physical memory device to store drop size logic and one or more processors coupled with the at least one physical memory device to execute the drop size logic to receive first ink usage drop fraction data for each of a plurality of color planes associated with a first halftone design, a first transfer function, and print job data, wherein ink usage drop fraction data represents the fraction of ink drops for each instructed drop size corresponding to each input digital count for a halftoning module, receive first ink drop size data for each of a plurality of color planes associated with the first halftone design and the first transfer function, receive second ink usage drop fraction data for each of the plurality of color planes associated with the first halftone design, a second transfer function and the print job data and generate second ink drop size data for each of the plurality of color planes based on the first ink usage drop fraction data, the first ink drop size data and the second ink usage drop fraction data.
摘要:
A system is disclosed. The system includes at least one physical memory device to store drop size logic and one or more processors coupled with the at least one physical memory device to execute the drop size logic to receive first ink usage drop fraction data for each of a plurality of color planes associated with a first halftone design, a first transfer function, and print job data, wherein ink usage drop fraction data represents the fraction of ink drops for each instructed drop size corresponding to each input digital count for a halftoning module, receive first ink drop size data for each of a plurality of color planes associated with the first halftone design and the first transfer function, receive second ink usage drop fraction data for each of the plurality of color planes associated with the first halftone design, a second transfer function and the print job data and generate second ink drop size data for each of the plurality of color planes based on the first ink usage drop fraction data, the first ink drop size data and the second ink usage drop fraction data.