摘要:
Of the many compositions and methods provided here, one method includes providing a drilling fluid comprising a lost circulation material and a base drilling fluid, wherein the base drilling fluid comprises an oleaginous continuous phase and a polar organic molecule, wherein the base drilling fluid has a first normal stress difference magnitude (|N1|) greater than about 100 Pa; and drilling a portion of a wellbore in a subterranean formation using the drilling fluid.
摘要:
Of the many compositions and methods provided herein, one method includes providing a drilling fluid comprising a base drilling fluid and a plurality of particulates, wherein the base drilling fluid without the particulates is characterized by N1(B) and wherein the base drilling fluid with the particulates is characterized by N1(A); and adjusting a concentration of the particulates in the drilling fluid by comparing the value of ΔN1(F) to ΔN1(P) so that ΔN1(F)≧ΔN1(P), wherein ΔN1(F)=|N1(A)|−|N1(B)|.
摘要:
A method for determining a Plug Normal Stress Difference (ΔN1(P)) may include providing a test base drilling fluid that is characterized by N1(TB); adding a first concentration of a test particulate to the test base drilling fluid; adjusting the concentration of the test particulate in the test base drilling fluid to achieve a minimum concentration of the test particulate in the test base drilling fluid that will substantially plug a tapered slot, wherein the test base drilling fluid with the minimum concentration of the test particulate is characterized by N1(TA); and calculating ΔN1(P)=|N1(TA)|−|N1(TB)| wherein each First Normal Stress Difference is measured by the same procedure.
摘要:
A drilling fluid may include a base drilling fluid and a plurality of particulates, wherein a concentration of the particulates in the base drilling fluid provides for ΔN1(F)≧ΔN1(P), wherein ΔN1(F)=|N1(A)|−|N1(B)|. The particulates may be lost circulation materials including, for example, fibers.
摘要:
A method for determining a Plug Normal Stress Difference (ΔN1(P)) may include providing a test base drilling fluid that is characterized by N1(TB); adding a first concentration of a test particulate to the test base drilling fluid; adjusting the concentration of the test particulate in the test base drilling fluid to achieve a minimum concentration of the test particulate in the test base drilling fluid that will substantially plug a tapered slot, wherein the test base drilling fluid with the minimum concentration of the test particulate is characterized by N1(TA); and calculating ΔN1(P)=|N1(TA)|−|N1(TB)| wherein each First Normal Stress Difference is measured by the same procedure.
摘要:
Of the many compositions and methods provided herein, one method includes providing a drilling fluid comprising a base drilling fluid and a plurality of particulates, wherein the base drilling fluid without the particulates is characterized by N1(B) and wherein the base drilling fluid with the particulates is characterized by N1(A); and adjusting a concentration of the particulates in the drilling fluid by comparing the value of ΔN1(F) to ΔN1(P) so that ΔN1(F)≧ΔN1(P), wherein ΔN1(F)=|N1(A)|−|N1(B)|.
摘要:
An apparatus and method for determining a formation/fluid interaction of a target formation and a target drilling fluid is described herein. The method may include training an artificial neural network using a training data set. The training data set may include a formation characteristic of a source formation and a fluid characteristic of a source drilling fluid and experimental data on source formation/fluid interaction. Once the artificial neural network is trained, a formation characteristic of the target formation and fluid characteristic of target drilling fluid may be input. The formation characteristic of the target formation may correspond to the formation characteristic of the source formation. The fluid characteristic of the target drilling fluid may correspond to the fluid characteristic of the source drilling fluid. A formation/fluid interaction of the target formation and the target drilling fluid may be determined using a value output by the artificial neural network.
摘要:
An apparatus and method for determining a formation/fluid interaction of a target formation and a target drilling fluid is described herein. The method may include training an artificial neural network using a training data set. The training data set may include a formation characteristic of a source formation and a fluid characteristic of a source drilling fluid and experimental data on source formation/fluid interaction. Once the artificial neural network is trained, a formation characteristic of the target formation and fluid characteristic of target drilling fluid may be input. The formation characteristic of the target formation may correspond to the formation characteristic of the source formation. The fluid characteristic of the target drilling fluid may correspond to the fluid characteristic of the source drilling fluid. A formation/fluid interaction of the target formation and the target drilling fluid may be determined using a value output by the artificial neural network.
摘要:
A method of wellbore strengthening may include providing a wellbore strengthening fluid comprising a drilling fluid, a particulate, and a fiber; introducing the wellbore strengthening fluid into a wellbore penetrating a subterranean formation; and forming a plug comprising the particulate and the fiber in a void near the wellbore, the plug being capable of maintaining integrity at about 1000 psi or greater overbalance pressure.
摘要:
A method of wellbore strengthening may include providing a wellbore strengthening fluid comprising a drilling fluid, a particulate, and a fiber; introducing the wellbore strengthening fluid into a wellbore penetrating a subterranean formation; and forming a plug comprising the particulate and the fiber in a void near the wellbore, the plug being capable of maintaining integrity at about 1000 psi or greater overbalance pressure.