摘要:
A computer implemented method for detecting the presence of one or more pedestrians in the vicinity of the vehicle is disclosed. Imagery of a scene is received from at least one image capturing device. A depth map is derived from the imagery. A plurality of pedestrian candidate regions of interest (ROIs) is detected from the depth map by matching each of the plurality of ROIs with a 3D human shape model. At least a portion of the candidate ROIs is classified by employing a cascade of classifiers tuned for a plurality of depth bands and trained on a filtered representation of data within the portion of candidate ROIs to determine whether at least one pedestrian is proximal to the vehicle.
摘要:
A computer implemented method for detecting the presence of one or more pedestrians in the vicinity of the vehicle is disclosed. Imagery of a scene is received from at least one image capturing device. A depth map is derived from the imagery. A plurality of pedestrian candidate regions of interest (ROIs) is detected from the depth map by matching each of the plurality of ROIs with a 3D human shape model. At least a portion of the candidate ROIs is classified by employing a cascade of classifiers tuned for a plurality of depth bands and trained on a filtered representation of data within the portion of candidate ROIs to determine whether at least one pedestrian is proximal to the vehicle.
摘要:
A computer implemented method for determining a vehicle type of a vehicle detected in an image is disclosed. An image having a detected vehicle is received. A number of vehicle models having salient feature points is projected on the detected vehicle. A first set of features derived from each of the salient feature locations of the vehicle models is compared to a second set of features derived from corresponding salient feature locations of the detected vehicle to form a set of positive match scores (p-scores) and a set of negative match scores (n-scores). The detected vehicle is classified as one of the vehicle models models based at least in part on the set of p-scores and the set of n-scores.
摘要:
A computer implemented method for determining a vehicle type of a vehicle detected in an image is disclosed. An image having a detected vehicle is received. A number of vehicle models having salient feature points is projected on the detected vehicle. A first set of features derived from each of the salient feature locations of the vehicle models is compared to a second set of features derived from corresponding salient feature locations of the detected vehicle to form a set of positive match scores (p-scores) and a set of negative match scores (n-scores). The detected vehicle is classified as one of the vehicle models models based at least in part on the set of p-scores and the set of n-scores.
摘要:
The present invention relates to a method and system for creating a strong classifier based on motion patterns wherein the strong classifier may be used to determine an action being performed by a body in motion. When creating the strong classifier, action classification is performed by measuring similarities between features within motion patterns. Embodiments of the present invention may utilize candidate part-based action sets and training samples to train one or more weak classifiers that are then used to create a strong classifier.
摘要:
The present invention relates to a method and system for creating a strong classifier based on motion patterns wherein the strong classifier may be used to determine an action being performed by a body in motion. When creating the strong classifier, action classification is performed by measuring similarities between features within motion patterns. Embodiments of the present invention may utilize candidate part-based action sets and training samples to train one or more weak classifiers that are then used to create a strong classifier.
摘要:
The present invention relates to a system and method for detecting one or more targets belonging to a first class (e.g., moving and/or stationary people), from a moving platform in a 3D-rich environment. The framework described here is implemented using a number of monocular or stereo cameras distributed around the vehicle to provide 360 degrees coverage. Furthermore, the framework described here utilizes numerous filters to reduce the number of false positive identifications of the targets.
摘要:
The present invention relates to a system and method for detecting one or more targets belonging to a first class (e.g., moving and/or stationary people), from a moving platform in a 3D-rich environment. The framework described here is implemented using a number of monocular or stereo cameras distributed around the vehicle to provide 360 degrees coverage. Furthermore, the framework described here utilizes numerous filters to reduce the number of false positive identifications of the targets.
摘要:
A computer-implemented method for matching objects is disclosed. At least two images where one of the at least two images has a first target object and a second of the at least two images has a second target object are received. At least one first patch from the first target object and at least one second patch from the second target object are extracted. A distance-based part encoding between each of the at least one first patch and the at least one second patch based upon a corresponding codebook of image parts including at least one of part type and pose is constructed. A viewpoint of one of the at least one first patch is warped to a viewpoint of the at least one second patch. A parts level similarity measure based on the view-invariant distance measure for each of the at least one first patch and the at least one second patch is applied to determine whether the first target object and the second target object are the same or different objects.
摘要:
A computer-implemented method for for matching objects is disclosed. At least two images where one of the at least two images has a first target object and a second of the at least two images has a second target object are received. At least one first patch from the first target object and at least one second patch from the second target object are extracted. A distance-based part encoding between each of the at least one first patch and the at least one second patch based upon a corresponding codebook of image parts including at least one of part type and pose is constructed. A viewpoint of one of the at least one first patch is warped to a viewpoint of the at least one second patch. A parts level similarity measure based on the view-invariant distance measure for each of the at least one first patch and the at least one second patch is applied to determine whether the first target object and the second target object are the same or different objects.