Abstract:
Systems and method presented herein enable the estimation of porosity using neutron-induced gamma ray spectroscopy. For example, the systems and methods presented herein include receiving, via a control and data acquisition system, data relating to energy spectra of gamma rays captured by one or more gamma ray detectors of a neutron-induced gamma ray spectroscopy logging tool. The method also includes deriving, via the control and data acquisition system, one or more spectral yields relating to one or more elemental components from the data relating to the energy spectra of the gamma rays. The method further includes estimating, via the control and data acquisition system, a measurement of porosity based on the one or more spectral yields relating to the one or more elemental components.
Abstract:
A method for pulsed neutron well logging of a subsurface formation, includes irradiating the formation with a plurality of bursts of neutrons of a group of selected durations; detecting gamma rays resulting from interaction of the neutrons during a group of selected time gates which contains at least some early and late gamma ray counts. The gamma rays are detected at at least two axially spaced apart locations from a position of the irradiating. A weighted sum of the numbers of gamma rays detected in each of the time gates is calculated. A ratio of the weighted sum of detected gamma rays at a first axial spacing to the weighted sum at a second axial spacing is determined. The ratio is used to determine a hydrogen index of the subsurface formation.
Abstract:
A method for pulsed neutron well logging of a subsurface formation, includes irradiating the formation with a plurality of bursts of neutrons of a group of selected durations; detecting gamma rays resulting from interaction of the neutrons during a group of selected time gates which contains at least some early and late gamma ray counts. The gamma rays are detected at at least two axially spaced apart locations from a position of the irradiating. A weighted sum of the numbers of gamma rays detected in each of the time gates is calculated. A ratio of the weighted sum of detected gamma rays at a first axial spacing to the weighted sum at a second axial spacing is determined. The ratio is used to determine a hydrogen index of the subsurface formation.
Abstract:
A method for determining the gas pressure may include generating, via a downhole tool, neutron radiation in a cased wellbore of a geological formation and measuring a response to the neutron radiation. The method may also include determining, via a processor, at least one of a sigma, a neutron porosity, or a fast-neutron cross-section of the formation. Additionally, an equation of state of the gas may be estimated, and a gas pressure of the gas may be determined by solving a relationship, based at least in part on the equation of state, between the gas pressure and the at least one of the sigma, the neutron porosity, or the fast-neutron cross-section.
Abstract:
A method for determining the gas pressure may include generating, via a downhole tool, neutron radiation in a cased wellbore of a geological formation and measuring a response to the neutron radiation. The method may also include determining, via a processor, at least one of a sigma, a neutron porosity, or a fast-neutron cross-section of the formation. Additionally, an equation of state of the gas may be estimated, and a gas pressure of the gas may be determined by solving a relationship, based at least in part on the equation of state, between the gas pressure and the at least one of the sigma, the neutron porosity, or the fast-neutron cross-section.
Abstract:
Elemental concentrations in subterranean formations may be determined using neutron spectroscopy. For example, neutrons may be emitted by a downhole tool into the formation and produce gamma rays via inelastic scattering of fast neutrons or capture of slow neutrons. The borehole surrounding a downhole tool may introduce artifacts in the neutron spectroscopy measurement. Embodiments of the present disclosure are directed to techniques that reduce artifacts signals in downhole tools that include one or multiple detectors based at least in part on the inelastic and capture measurements.
Abstract:
A presence of cement may be identified based on a downhole tool that may emit neutrons into a wellbore having at least one cement casing. The neutrons may interact with the particular material via inelastic scattering, inelastic neutron reactions, capture of neutrons and/or neutron activation through one of these reactions and cause a material to emit an energy spectrum of gamma rays, and wherein the downhole tool is configured to detect an energy spectrum of the gamma rays that is specific to at least one of a plurality of elements and associated a region within the wellbore. An amount of elements, such as calcium and silicon, may be determined from the gamma ray spectra that may indicate a present of cement within the wellbore.
Abstract:
Systems and method presented herein enable the estimation of porosity using neutron-induced gamma ray spectroscopy. For example, the systems and methods presented herein include receiving, via a control and data acquisition system, data relating to energy spectra of gamma rays captured by one or more gamma ray detectors of a neutron-induced gamma ray spectroscopy logging tool. The method also includes deriving, via the control and data acquisition system, one or more spectral yields relating to one or more elemental components from the data relating to the energy spectra of the gamma rays. The method further includes estimating, via the control and data acquisition system, a measurement of porosity based on the one or more spectral yields relating to the one or more elemental components.
Abstract:
A presence of cement may be identified based on a downhole tool that may emit neutrons into a wellbore having at least one cement casing. The neutrons may interact with the particular material via inelastic scattering, inelastic neutron reactions, capture of neutrons and/or neutron activation through one of these reactions and cause a material to emit an energy spectrum of gamma rays, and wherein the downhole tool is configured to detect an energy spectrum of the gamma rays that is specific to at least one of a plurality of elements and associated a region within the wellbore. An amount of elements, such as calcium and silicon, may be determined from the gamma ray spectra that may indicate a present of cement within the wellbore.
Abstract:
A presence of cement may be identified based on a downhole tool that may emit neutrons into a wellbore having at least one cement casing. The neutrons may interact with the particular material via inelastic scattering, inelastic neutron reactions, capture of neutrons and/or neutron activation through one of these reactions and cause a material to emit an energy spectrum of gamma rays, and wherein the downhole tool is configured to detect an energy spectrum of the gamma rays that is specific to at least one of a plurality of elements and associated a region within the wellbore. An amount of elements, such as calcium and silicon, may be determined from the gamma ray spectra that may indicate a present of cement within the wellbore.