Abstract:
Composition-matched downhole tools and methods for using such tools are provided. One such method includes emitting neutrons using a neutron source in the downhole tool to generate formation gamma rays in a surrounding formation. At the same time, however, some of the neutrons may interact with different parts of the downhole tool to form tool gamma rays. The gamma ray spectra of at least some of the formation gamma rays and the tool gamma rays may be detected using a gamma ray detector. The tool gamma rays from the different parts of the tool may have a substantially similar spectral shape. As such, a processor may be used to analyze the spectra of the tool gamma rays using a single tool background standard, thereby simplifying the analysis and improving the precision of the results.
Abstract:
Systems and method presented herein enable the estimation of porosity using neutron-induced gamma ray spectroscopy. For example, the systems and methods presented herein include receiving, via a control and data acquisition system, data relating to energy spectra of gamma rays captured by one or more gamma ray detectors of a neutron-induced gamma ray spectroscopy logging tool. The method also includes deriving, via the control and data acquisition system, one or more spectral yields relating to one or more elemental components from the data relating to the energy spectra of the gamma rays. The method further includes estimating, via the control and data acquisition system, a measurement of porosity based on the one or more spectral yields relating to the one or more elemental components.
Abstract:
A borehole tool calibration method may include obtaining a measured energy spectrum for at least one geological constituent based upon a first borehole tool, generating a calculated energy spectrum for the at least one geological constituent for the first borehole tool, and generating a calculated energy spectrum for the at least one geological constituent for a second borehole tool different than the first borehole tool. The method may further include determining a relationship between the calculated energy spectra for the first and second borehole tools, and determining a calibration parameter for the second borehole tool based upon the measured energy spectrum and the relationship between the calculated energy spectra for the first and second borehole tools.
Abstract:
A method for estimating at least one geological constituent may include obtaining a measured energy spectrum for the at least one geological constituent for a first borehole configuration, generating a calculated energy spectrum for the at least one geological constituent for the first borehole configuration, and generating a calculated energy spectrum for the at least one geological constituent for a second borehole configuration different than the first borehole configuration. The method may further include determining a relationship between the calculated energy spectra for the first and second borehole configurations, and generating an estimated energy spectrum for the at least one geological constituent for the second borehole configuration based upon the measured energy spectrum and the relationship between the calculated energy spectra for the first and second borehole configurations.
Abstract:
Composition-matched downhole tools and methods for using such tools are provided. One such method includes emitting neutrons using a neutron source in the downhole tool to generate formation gamma rays in a surrounding formation. At the same time, however, some of the neutrons may interact with different parts of the downhole tool to form tool gamma rays. The gamma ray spectra of at least some of the formation gamma rays and the tool gamma rays may be detected using a gamma ray detector. The tool gamma rays from the different parts of the tool may have a substantially similar spectral shape. As such, a processor may be used to analyze the spectra of the tool gamma rays using a single tool background standard, thereby simplifying the analysis and improving the precision of the results.
Abstract:
Systems and method presented herein enable the estimation of porosity using neutron-induced gamma ray spectroscopy. For example, the systems and methods presented herein include receiving, via a control and data acquisition system, data relating to energy spectra of gamma rays captured by one or more gamma ray detectors of a neutron-induced gamma ray spectroscopy logging tool. The method also includes deriving, via the control and data acquisition system, one or more spectral yields relating to one or more elemental components from the data relating to the energy spectra of the gamma rays. The method further includes estimating, via the control and data acquisition system, a measurement of porosity based on the one or more spectral yields relating to the one or more elemental components.
Abstract:
A method for estimating at least one geological constituent may include obtaining a measured energy spectrum for the at least one geological constituent for a first borehole configuration, generating a calculated energy spectrum for the at least one geological constituent for the first borehole configuration, and generating a calculated energy spectrum for the at least one geological constituent for a second borehole configuration different than the first borehole configuration. The method may further include determining a relationship between the calculated energy spectra for the first and second borehole configurations, and generating an estimated energy spectrum for the at least one geological constituent for the second borehole configuration based upon the measured energy spectrum and the relationship between the calculated energy spectra for the first and second borehole configurations.
Abstract:
A borehole tool calibration method may include obtaining a measured energy spectrum for at least one geological constituent based upon a first borehole tool, generating a calculated energy spectrum for the at least one geological constituent for the first borehole tool, and generating a calculated energy spectrum for the at least one geological constituent for a second borehole tool different than the first borehole tool. The method may further include determining a relationship between the calculated energy spectra for the first and second borehole tools, and determining a calibration parameter for the second borehole tool based upon the measured energy spectrum and the relationship between the calculated energy spectra for the first and second borehole tools.