Abstract:
A method is provided for characterizing fluid flow in a pipe where the fluid includes a drag reducing polymer of a particular type and particular concentration. A computational model is configured to model flow of a fluid in a pipe. The computational model utilizes an empirical parameter for a drag reducing polymer of the particular type and the particular concentration. The computational model can be used to derive information that characterizes the flow of the fluid in the pipe. The empirical parameter for the particular type and the particular concentration of the drag reducing polymer can be identified by solving another computational model that is configured to model turbulent Couette flow in a Couette device for a fluid that includes a drag reducing polymer of the particular type and the particular concentration. The empirical data needed for identification of the empirical parameter are obtained from Couette device experiments.
Abstract:
An apparatus (and method) for characterizing interfacial tension between a non-wetting phase fluid and a wetting phase fluid of a slug flow employs a capillary structure that is configured to contain a slug of the non-wetting phase fluid of the slug flow. The slug has a leading edge meniscus and a trailing edge meniscus, and the capillary structure has a venturi-like section. A pressure sensor is configured to measure differential pressure between first and second locations of the capillary structure. The first location is disposed upstream of the leading edge meniscus of the slug with the leading edge meniscus of the slug contained within the venturi-like section. The second location is disposed downstream of the trailing edge meniscus of the slug. Data processing means is configured to derive a measure of interfacial tension based upon the differential pressure measured by the pressure sensor and, optionally, geometry of the capillary structure.
Abstract:
A method is provided for characterizing fluid flow in a pipe where the fluid includes a drag reducing polymer of a particular type and particular concentration. A computational model is configured to model flow of a fluid in a pipe. The computational model utilizes an empirical parameter for a drag reducing polymer of the particular type and the particular concentration. The computational model can be used to derive information that characterizes the flow of the fluid in the pipe. The empirical parameter for the particular type and the particular concentration of the drag reducing polymer can be identified by solving another computational model that is configured to model turbulent Couette flow in a Couette device for a fluid that includes a drag reducing polymer of the particular type and the particular concentration. The empirical data needed for identification of the empirical parameter are obtained from Couette device experiments.
Abstract:
An apparatus (and method) for characterizing interfacial tension between a non-wetting phase fluid and a wetting phase fluid of a slug flow employs a capillary structure that is configured to contain a slug of the non-wetting phase fluid of the slug flow. The slug has a leading edge meniscus and a trailing edge meniscus, and the capillary structure has a venturi-like section. A pressure sensor is configured to measure differential pressure between first and second locations of the capillary structure. The first location is disposed upstream of the leading edge meniscus of the slug with the leading edge meniscus of the slug contained within the venturi-like section. The second location is disposed downstream of the trailing edge meniscus of the slug. Data processing means is configured to derive a measure of interfacial tension based upon the differential pressure measured by the pressure sensor and, optionally, geometry of the capillary structure.