Abstract:
A perpendicular recording medium with enhanced magnetic stability. In accordance with some embodiments, a multi-layer recording structure is formed on a base substrate and adapted to magnetically store a magnetic bit sequence in domains substantially perpendicular to said layers. A thin magnetic stabilization layer is formed on the multi-layer recording substrate to magnetically stabilize an upper portion of the recording structure.
Abstract:
An embodiment of the invention relates to a perpendicular magnetic recording medium comprising (1) a substrate, (2) an interlayer comprising hexagonal columns and (3) a magnetic layer, wherein the magnetic layer is deposited applying a bias voltage to the substrate such that the magnetic layer comprises magnetic grains having substantially no sub-grains within the magnetic layer, and the magnetic layer has perpendicular magnetic anisotropy.
Abstract:
An embodiment of the invention relates to a perpendicular magnetic recording medium comprising (1) a substrate, (2) an interlayer comprising hexagonal columns and (3) a magnetic layer, wherein the magnetic layer is deposited applying a bias voltage to the substrate such that the magnetic layer comprises magnetic grains having substantially no sub-grains within the magnetic layer, and the magnetic layer has perpendicular magnetic anisotropy.
Abstract:
A perpendicular recording medium with enhanced magnetic stability. In accordance with some embodiments, a multi-layer recording structure is formed on a base substrate and adapted to magnetically store a magnetic bit sequence in domains substantially perpendicular to said layers. A thin magnetic stabilization layer is formed on the multi-layer recording substrate to magnetically stabilize an upper portion of the recording structure.