Abstract:
A perpendicular recording medium with enhanced magnetic stability. In accordance with some embodiments, a multi-layer recording structure is formed on a base substrate and adapted to magnetically store a magnetic bit sequence in domains substantially perpendicular to said layers. A thin magnetic stabilization layer is formed on the multi-layer recording substrate to magnetically stabilize an upper portion of the recording structure.
Abstract:
An apparatus is disclosed. The apparatus includes a storage layer, a first write layer, and a second write layer. The first write layer is disposed over the storage layer. The second write layer is disposed over the first write layer. The anisotropy field and magnetization associated with the second write layer at writing temperature is greater than anisotropy field and magnetization associated with the first write layer at the writing temperature.
Abstract:
A perpendicular magnetic recording medium having a dual-layer magnetic film is disclosed. The bottom layer is completely exchange decoupled, and the top layer contains a certain amount of exchange coupling optimized for recording performance. Preferably, the bottom magnetic layer contains stable oxide material (for example, TiO2) and other non-magnetic elements (for example, Cr). A method of manufacturing the media is also disclosed.
Abstract:
Provided herein, is an apparatus that includes a nonmagnetic substrate having a surface; and a plurality of overlying thin film layers forming a layer stack on the substrate surface. The layer stack includes a magnetically hard perpendicular magnetic recording layer structure and an underlying soft magnetic underlayer (SUL), wherein the sum of a magnetic thickness of the layer stack is a magnetic thickness of up to about 2 memu/cm̂2.
Abstract translation:本文提供了一种包括具有表面的非磁性基板的装置; 以及在衬底表面上形成层叠的多个上覆薄膜层。 层叠层包括磁性硬的垂直磁记录层结构和底层软磁性底层(SUL),其中层叠层的磁性厚度之和是至多约2emu / cm 2的磁性厚度。
Abstract:
A perpendicular recording medium with enhanced magnetic stability. In accordance with some embodiments, a multi-layer recording structure is formed on a base substrate and adapted to magnetically store a magnetic bit sequence in domains substantially perpendicular to said layers. A thin magnetic stabilization layer is formed on the multi-layer recording substrate to magnetically stabilize an upper portion of the recording structure.