Abstract:
The present disclosure relates to a data storage device interior components and/or data storage device housing components that include one or more solid-state deposition layers, and related methods of applying solid-state material to said components via solid-state deposition.
Abstract:
The present disclosure relates to a data storage device interior components and/or data storage device housing components that include one or more solid-state deposition layers, and related methods of applying solid-state material to said components via solid-state deposition.
Abstract:
The present disclosure relates to a data storage device interior components and/or data storage device housing components that include one or more solid-state deposition layers, and related methods of applying solid-state material to said components via solid-state deposition.
Abstract:
The present disclosure relates to a data storage device interior components and/or data storage device housing components that include one or more solid-state deposition layers, and related methods of applying solid-state material to said components via solid-state deposition.
Abstract:
In certain embodiments, an apparatus includes a basedeck; a motor coupled to the basedeck and having a rotatable hub; and first, second, third, fourth, and fifth discs coupled to the hub. Three of the five discs are biased against the hub in a first direction and two of the five discs are biased against the hub in a second direction. In certain embodiments, a method includes biasing at least three discs against a hub in a first direction and biasing at least two discs against the hub in a second direction.
Abstract:
The present disclosure relates to a data storage device interior components and/or data storage device housing components that include one or more solid-state deposition layers, and related methods of applying solid-state material to said components via solid-state deposition.
Abstract:
In certain embodiments, an apparatus includes a basedeck; a motor coupled to the basedeck and having a rotatable hub; and first, second, third, fourth, and fifth discs coupled to the hub. Three of the five discs are biased against the hub in a first direction and two of the five discs are biased against the hub in a second direction. In certain embodiments, a method includes biasing at least three discs against a hub in a first direction and biasing at least two discs against the hub in a second direction.
Abstract:
The present disclosure relates to using solid state deposition to selectively and strategically manage one or more properties of one or more portions of a data storage device. Material deposited via solid-state deposition can be used to prepare a surface for subsequent treatment (e.g., welding), to join two or more substrates together, and/or to seal one or more joints or surfaces to control, e.g., the humidity in the interior of a data storage device. The present disclosure also involves related data storage devices.
Abstract:
In certain embodiments, an apparatus includes a basedeck; a motor coupled to the basedeck and having a rotatable hub; and first, second, third, fourth, and fifth discs coupled to the hub. Three of the five discs are biased against the hub in a first direction and two of the five discs are biased against the hub in a second direction. In certain embodiments, a method includes biasing at least three discs against a hub in a first direction and biasing at least two discs against the hub in a second direction.