摘要:
Disclosed herein is a newly discovered problem and solution for engineering S. cerevisiae to ferment xylose to make ethanol utilizing xylose isomerase to convert xylose to xylulose for entry, via xylulokinase, into the pentose phosphate pathway. When grown on a media containing xylose xylitol tends to accumulate in the cell despite the absence of xylose reductase activity in S. cerevisiae. Xylitol inhibits the activity of xylose isomerases. One solution described is to simultaneously express an exogenous xylitol dehydrogenase along with the exogenous xylose isomerase while optionally also overexpressing xylulokinase in the absence of expression of a xylose reductase. Another solution is a xylose isomerase from Bacteroides fragilis which is less inhibited by xylitol than other xylose isomerases, exemplified by E. coli xylose isomerase. Expression of the Bacteroides fragilis xylose isomerase may be used alone, or in combination with expression of axylitol dehydrogenase and optionally over expression of xylulokinase to improve ethanol production from xylose.
摘要:
Disclosed herein is a newly discovered problem and solution for engineering S. cerevisiae to ferment xylose to make ethanol utilizing xylose isomerase to convert xylose to xylulose for entry, via xylulokinase, into the pentose phosphate pathway. The problem is that when grown on a media containing xylose xylitol tends to accumulate in the cell despite the absence of xylose reductase activity in S. cerevisiae. Xylitol inhibits the activity of xylose isomerases. One solution described is to simultaneously express an exogenous xylitol dehydrogenase along with the exogenous xylose isomerase while optionally also overexpressing xylulokinase in the absence of expression of a xylose reductase. Another solution is a xylose isomerase from Bacteroides fragilis which is less inhibited by xylitol than other xylose isomerases, exemplified by E. coli xylose isomerase. Expression of the Bacteroides fragilis xylose isomerase may be used alone, or in combination with expression of a xylitol dehydrogenase and optionally over expression of xylulokinase to improve ethanol production from xylose.
摘要:
The invention provides microbial strains possessing improved properties for production of aspartate-derived amino acids and chemicals. Methods of making such strains are provided. These methods include altering expression of the aceBAK operon, the glcB gene, or both. Alteration of expression may be accomplished through increased transcription, relief from native transcriptional control, and/or other means. Replacement of native promoters for these genes is also contemplated; for instance, their native promoters may be replaced by the tac promoter (Ptac).
摘要:
A comprehensive method to train and aid manufacturers in identifying inefficiencies in product manufacturing processes and in improving such processes. The method includes placing individuals in roles associated with a complete manufacturing operation from supply acquisition through to product delivery in the simulation of a product to be made. The method includes a set of tools describing individual stages of the complete manufacturing process but with all tools related to the common simulation. The individuals carry out their roles in the steps of the production simulation and their roles may be varied. This comprehensive method aids individuals in the observation and correction of wasteful production activities from the supply chain through manufacturing and back-end functions.
摘要:
The invention relates to novel bacterial strains and constructs as well as methods for production of L-amino acids, including but not limited to L-threonine. Such novel bacterial strains may be characterized by, for instance, Escherichia coli strains in which an aspartate semialdehyde dehydrogenase (asd) gene is operably associated with at least one non-native promoter, non-native ribosome binding site, or both.