Abstract:
A liquid ejecting apparatus includes a liquid ejecting head, an ink supply tube that supplies ink to the liquid ejecting head, a pressure control valve that opens as a result of depressurization on the liquid ejecting head side, a check valve provided upstream from the pressure control valve, an ink circulation tube that is connected at both ends to the ink supply tube between the pressure control valve and the check valve, and a tube pump provided in the ink circulation tube; in this configuration, by providing at least one of an ink return tube and a liquid reservoir portion that is capable of holding liquid in a liquid flow channel in a pressurized state, a rise in pressure within a circulating flow channel caused by pump operations can be suppressed.
Abstract:
A liquid ejecting apparatus includes a liquid ejecting portion, a strip member, and a supply portion capable of supplying a reaction liquid having a component that cures ink to the strip member, the strip member being provided so as to be able to set a receiving region that receives any one of ink and reaction liquid discharged as waste liquid from a nozzle of the liquid ejecting portion and a contact region that comes into contact with the liquid ejecting portion when any one of ink and reaction liquid is collected, and the supply portion supplies the reaction liquid to a supply region set in the strip member between the contact region and a position farthest from the contact region in the receiving region.
Abstract:
There is provided an ejecting unit for ejecting a first fluid from nozzles, including: a first connection port to flow the first fluid; a second connection port to flow a second fluid; a driving portion configured to eject the first fluid in a flow path which communicates with the first connection port and the nozzles, from the nozzles; a first chamber that communicates with the second connection port; and a second chamber that communicates with the second connection port.
Abstract:
A liquid container 16 mountable to a printing apparatus 11 that performs printing by discharging a liquid and capable of storing a liquid supplied in a pressurized state is provided with a liquid introduction part 47 through which the liquid is introduced, a tank 38 capable of storing the liquid introduced from the liquid introduction part 47, and a liquid supply part 48 that supplies the liquid in the tank 38 to a printing apparatus 11, and the tank 38 is molded to have flexibility.
Abstract:
A cap device is designed to form a space surrounding an opening of a nozzle of a liquid ejecting head when the cap device is in contact with the liquid ejecting head including the nozzle for ejecting a liquid, and includes a moisturizing chamber to which a moisturizing fluid for moisturizing the above space is supplied, and a partition wall having gas permeability and configured to partition the space and the moisturizing chamber, where part of the partition wall is formed of a flexible portion.
Abstract:
A capping device includes a moisturizing cap which is brought into contact with a liquid ejecting unit configured to eject a liquid from a nozzle so as to allow forming of a space including the nozzle, a connection flow channel which is connected to the moisturizing cap, and a moisturizing liquid supply unit which is connected to the connection flow channel, includes a moisturizing liquid storage unit configured to allow storing of a moisturizing liquid, and allows a supply of the moisturizing liquid to the moisturizing liquid storage unit so as to cause a liquid surface of the moisturizing liquid in the moisturizing liquid storage unit to be a first position. The moisturizing cap includes an atmospheric communication portion configured to open the space to an atmosphere.
Abstract:
A liquid ejecting apparatus includes a liquid ejector that ejects a liquid, a liquid supply flow path that connects a liquid supply source and the liquid ejector, a plurality of branch flow paths provided in the liquid supply flow path, filters that are disposed separately in each of the branch flow paths, and a flow path opening/closing mechanism that opens and closes the branch flow paths.
Abstract:
A liquid supply system includes a common mounting portion into which a first liquid storage body capable of storing a liquid and a substitute mounting body which is connected to a second liquid storage body capable of storing a liquid can be exchangeably mounted, a mounting target detection unit capable of detecting whether or not the first liquid storage body and the substitute mounting body are mounted to the common mounting portion, a pressurization supply unit which supplies the liquid which is stored in the second liquid storage body to the substitute mounting body under pressure, and a control unit which drives the pressure supply unit when a plurality of control conditions are satisfied.
Abstract:
A liquid container is configured to be detachably attached to a liquid container storage section having a liquid supply section, and a damping section including a movement section that seals off one end of a recess space and is movable in a direction of compression in which air of the recess space is compressed, and an urging section that urges the movement section in a direction opposite to the direction of compression. The liquid container includes a liquid lead-out section configured to be connected to the liquid supply section, and an abutment section arranged on a same side as a side section to which the liquid lead-out section is provided, and abuttable against the movement section in a direction of mounting that matches the direction of compression when the liquid container moves in the direction of mounting with respect to the liquid container storage section.
Abstract:
A liquid ejecting apparatus includes a liquid ejecting head, an ink supply tube that supplies ink to the liquid ejecting head, a pressure control valve that opens as a result of depressurization on the liquid ejecting head side, a check valve provided upstream from the pressure control valve, an ink circulation tube that is connected at both ends to the ink supply tube between the pressure control valve and the check valve, and a tube pump provided in the ink circulation tube; in this configuration, by providing at least one of an ink return tube and a liquid reservoir portion that is capable of holding liquid in a liquid flow channel in a pressurized state, a rise in pressure within a circulating flow channel caused by pump operations can be suppressed.