Abstract:
Methods are disclosed for monitoring, controlling and optimizing fouling of a two side membrane fouling process. The method for monitoring fouling of a two side membrane fouling process can include determining the process model for the two side membrane fouling process. The parameters of the process model can be grouped based on the interactions thereof between the parameters so as to form one or more groups of parameters. At least one key performance index is estimated in relation to one or more groups of parameters. The fouling of the two side membrane fouling process is monitored correspondingly in relation to at least one key performance index.
Abstract:
Methods are disclosed for monitoring, controlling and optimizing fouling of a two side membrane fouling process. The method for monitoring fouling of a two side membrane fouling process can include determining the process model for the two side membrane fouling process. The parameters of the process model can be grouped based on the interactions thereof between the parameters so as to form one or more groups of parameters. At least one key performance index is estimated in relation to one or more groups of parameters. The fouling of the two side membrane fouling process is monitored correspondingly in relation to at least one key performance index.
Abstract:
A method is disclosed for estimating an optimal individual product water flow rate for a RO train in an RO unit. The RO unit includes a plurality of RO trains. The method can include providing a desired overall product water flow rate for the reverse osmosis unit followed by obtaining one or more dynamic characteristics for each RO train in the plurality of RO trains; estimating a minimal specific energy consumption value for each RO train using the one or more dynamic characteristics; and subsequently obtaining an optimal individual product water flow rate for each RO train.