摘要:
Organic electrolyte solutions and lithium batteries employing the same are provided. In one embodiment, an organic electrolyte solution includes a silane compound. The inventive organic electrolyte solutions prevent crack formation caused by volumetric changes in the anode active material during charging/discharging of the battery. This improves charge/discharge characteristics, resulting in improved battery stability, reliability, and charge/discharge efficiency, which is a dramatic improvement over conventional organic electrolyte solutions, which have higher irreversible capacities due to the decomposition of polar solvents.
摘要:
Organic electrolyte solutions and lithium batteries employing the same are provided. In one embodiment, an organic electrolyte solution includes a silane compound. The inventive organic electrolyte solutions prevent crack formation caused by volumetric changes in the anode active material during charging/discharging of the battery. This improves charge/discharge characteristics, resulting in improved battery stability, reliability, and charge/discharge efficiency, which is a dramatic improvement over conventional organic electrolyte solutions, which have higher irreversible capacities due to the decomposition of polar solvents.
摘要:
An organic electrolytic solution includes a lithium salt; an organic solvent including a high dielectric constant solvent and a low boiling point solvent; and an additive of a hetero ring compound including a cyano group and an alkenyl group as substituents. The organic electrolytic solution and the lithium battery employing the organic electrolytic solution suppress the reduction decomposition of a polar solvent to improve the capacity retention ratio of the battery. Thus, the charge/discharge efficiency and lifespan of the battery can be improved.
摘要:
An organic electrolytic solution and a lithium battery employing the same are provided. The organic electrolytic solution includes: a lithium salt; an organic solvent containing a high dielectric constant solvent and a low boiling point solvent; and an additive comprising a crotonate derivative including a substituted silyl group. The organic electrolytic solution and the lithium battery employing such an electrolytic solution suppress a reduction decomposition of a polar solvent and decrease irreversible capacity in the first cycle. Thus, the charge/discharge efficiency, lifespan, and reliability of the battery can be improved.
摘要:
An organic electrolytic solution and a lithium battery employing the same are provided. The organic electrolytic solution includes: a lithium salt; an organic solvent containing a high dielectric constant solvent and a low boiling point solvent; and an additive comprising a crotonate derivative including a substituted silyl group. The organic electrolytic solution and the lithium battery employing such an electrolytic solution suppress a reduction decomposition of a polar solvent and decrease irreversible capacity in the first cycle. Thus, the charge/discharge efficiency, lifespan, and reliability of the battery can be improved.
摘要:
Organic electrolytic solutions and lithium batteries using the organic electrolytic solutions are provided. One organic electrolytic solution includes a lithium salt, a mixed organic solvent consisting of a high-dielectric constant solvent and a low-boiling point solvent, and a compound represented by Formula 1 or 2 as an additive. The organic electrolytic solution and the lithium battery using the organic electrolytic solution may inhibit the reductive cleavage reaction of a polar solvent, thereby increasing capacity retention of the battery, and improving charge-discharge efficiency and battery lifetime.
摘要:
An organic electrolytic solution and a lithium battery employing the same are provided. The organic electrolytic solution includes: a lithium salt; an organic solvent containing a high dielectric constant solvent and a low boiling point solvent; and an acetate derivative including two or more substituted silyl groups as an additive. The organic electrolytic solution and the lithium battery employing the same relatively suppress a reduction decomposition of a polar solvent and decrease irreversible capacity in the first cycle. Thus, the charge/discharge efficiency, lifespan, and reliability of the battery can be improved.
摘要:
An organic electrolytic solution and a lithium battery employing the same are provided. The organic electrolytic solution includes: a lithium salt; an organic solvent containing a high dielectric constant solvent and a low boiling point solvent; and an acetate derivative including two or more substituted silyl groups as an additive. The organic electrolytic solution and the lithium battery employing the same relatively suppress a reduction decomposition of a polar solvent and decrease irreversible capacity in the first cycle. Thus, the charge/discharge efficiency, lifespan, and reliability of the battery can be improved.
摘要:
An organic electrolytic solution includes a lithium salt; an organic solvent including a high dielectric constant solvent and a low boiling point solvent; and an additive of a hetero ring compound including a cyano group and an alkenyl group as substituents. The organic electrolytic solution and the lithium battery employing the organic electrolytic solution suppress the reduction decomposition of a polar solvent to improve the capacity retention ratio of the battery. Thus, the charge/discharge efficiency and lifespan of the battery can be improved.
摘要:
Organic electrolytic solutions and lithium batteries using the organic electrolytic solutions are provided. One organic electrolytic solution includes a lithium salt, a mixed organic solvent consisting of a high-dielectric constant solvent and a low-boiling point solvent, and a compound represented by Formula 1 or 2 as an additive. The organic electrolytic solution and the lithium battery using the organic electrolytic solution may inhibit the reductive cleavage reaction of a polar solvent, thereby increasing capacity retention of the battery, and improving charge-discharge efficiency and battery lifetime.