Metallic glass composites with controllable work-hardening capacity

    公开(公告)号:US20170101702A1

    公开(公告)日:2017-04-13

    申请号:US15287693

    申请日:2016-10-06

    CPC classification number: C22C45/10 C22C1/002 C22C45/001

    Abstract: There are provided metallic glass matrix composites with controllable work-hardening capacity. In more detail, there are provided metallic glass matrix composite with controllable work-hardening capacity capable of having significantly excellent toughness due to a metastable second phase precipitated in-situ in a metallic glass matrix by polymorphic phase transformation during a solidification process without a separate synthetic process, and capable of controlling work-hardening capacity by measuring physical properties of a second phase and adjusting a volume fraction (Vf) of the second phase due to constant correlation between the physical properties (absorbed energy Eta, a phase transformation temperature TMs, or a hardness H2nd) of a metastable B2 second phase precipated in the metallic glass matrix and the absorbed energy (Epa,V) by work-hardening per unit volume fraction of the second phase in the metallic glass matrix.

    BCC DUAL PHASE REFRACTORY SUPERALLOY WITH HIGH PHASE STABILITY AND MANUFACTURING METHOD THEREFORE

    公开(公告)号:US20230058823A1

    公开(公告)日:2023-02-23

    申请号:US17965103

    申请日:2022-10-13

    Abstract: Disclosed are a BCC dual phase refractory superalloy with high phase stability and a manufacturing method therefor, the alloy comprising one or more of Ti, Zr, and Hf as Group 4 transition metals, one or more of Na and Ta as Group 5 transition metals, and Al, and having a structure of a BCC phase, wherein the BCC phase is composed of a disordered BCC phase and an ordered BCC phase, and wherein the ordered BCC phase is formed by allowing Al, which is a BCC phase forming element, to be soluted in an area of the BCC phase where the contents of the Group 5 transition metals are more than those of the Group 4 transition metals, so that the present disclosure provides a BCC dual phase refractory superalloy with high phase stability, characterized in that when a BCC dual phase with the ordered BCC phase and the disordered BCC phase separated from each other is formed by aging, the aging condition is precisely controlled through the apex temperature (Tc) of the BCC phase miscibility gap, expressed by (Equation 1) below. Tc(K)=881.4+331.7*x+546.7*y+893.0*x*z  (Equation 1) (provided that, 0≤x≤1, 0≤y≤0.2, 0≤x+y≤1, and 0≤z≤1)

    Metallic glass composites with controllable work-hardening capacity

    公开(公告)号:US20190062884A1

    公开(公告)日:2019-02-28

    申请号:US16106232

    申请日:2018-08-21

    Abstract: There are provided metallic glass matrix composites with controllable work-hardening capacity. In more detail, there are provided metallic glass matrix composite with controllable work-hardening capacity capable of having significantly excellent toughness due to a metastable second phase precipitated in-situ in a metallic glass matrix by polymorphic phase transformation during a solidification process without a separate synthetic process, and capable of controlling work-hardening capacity by measuring physical properties of a second phase and adjusting a volume fraction (Vf) of the second phase due to constant correlation between the physical properties (absorbed energy Eta, a phase transformation temperature TMs, or a hardness H2nd) of a metastable B2 second phase precipated in the metallic glass matrix and the absorbed energy (Epa,V) by work-hardening per unit volume fraction of the second phase in the metallic glass matrix.

Patent Agency Ranking