Abstract:
In a round baler, twin arms come together in the start position, on the side opposite the cut position, because that configuration ensures that two twines lie nearly on top of each other to secure the bale much better at that end than with a single twine. The “start position” refers to that position where the twine arms reverse direction, and change from a fast speed of travel used to move the twine arms across the bale width, to a slower, controlled speed that is adjustable to vary the spacing of the twines. The change in direction combined with bringing the twine arms together at the start position, ensures that loose twine ends are effectively restrained as the twines are applied.
Abstract:
A suspension system for agricultural implements having at least one floating head using a four-bar linkage and permitting the floating head to accommodate variations in ground surface elevation in a lateral or transverse direction. By permitting the floating head to float, a more consistent cutting height is realized when ground surface elevation varies in a transverse direction. A main frame is provided to which the ground engaging wheels are attached. A sub-frame is connected to the main frame via the four-bar linkage. The sub-frame is pivotally attached to the arms of the four-bar linkage by spherical bearings.
Abstract:
A suspension system for agricultural implements having at least one floating head using a four-bar linkage and permitting the floating head to accommodate variations in ground surface elevation in a lateral or transverse direction. By permitting the floating head to float, a more consistent cutting height is realized when ground surface elevation varies in a transverse direction. A main frame is provided to which the ground engaging wheels are attached. A sub-frame is connected to the main frame via the four-bar linkage. The sub-frame is pivotally attached to the arms of the four-bar linkage by spherical bearings.
Abstract:
A drive system for agricultural implements having at least one floating head and a tongue that may be disposed at various angles relative to a longitudinal angle of the implement. Two swivel gearbox assemblies are used, each comprising a first 90° gearbox rigidly attached to the implement and a second 90° gearbox that is permitted to rotate about an axis passing through one of its shafts and one of the first 90° gearbox's shaft. Because the tongue angle is variable, the drive shafts for driving the implement must take on a plurality of angles. The swiveling gearbox assemblies allow variable angles at the tongue and at the header.
Abstract:
A suspension system for agricultural implements having at least one floating head using a four-bar linkage and permitting the floating head to accommodate variations in ground surface elevation in a lateral or transverse direction. By permitting the floating head to float, a more consistent cutting height is realized when ground surface elevation varies in a transverse direction. A main frame is provided to which the ground engaging wheels are attached. A sub-frame is connected to the main frame via the four-bar linkage. The sub-frame is pivotally attached to the arms of the four-bar linkage by spherical bearings.
Abstract:
A swing cylinder such as those used to offset an agricultural implement may experience larges forces as it reaches the ends of its travel. A cushioning system to mitigate these forces comprises a piston with wear rings engaged thereto. The wear rings block off a usual passageway for the hydraulic fluid to flow, and provide their own, much smaller passageway. The flow of hydraulic fluid is thereby restricted in the neighborhood of the extremes of piston travel. An additional aspect of the invention is that the wear rings are pushed out of their position blocking the passageway when hydraulic fluid pressure is applied to move the piston away from the extreme position, thereby completely removing the restriction to flow in that direction.
Abstract:
A support structure for agricultural implements having at least one floating head with a work tool. The support structure permits the work tool to be folded. The work tool of the agricultural implement is supported near its outer end by the support structure in a cantilevered fashion.
Abstract:
A drive system for agricultural implements having at least one floating head and a tongue that may be disposed at various angles relative to a longitudinal angle of the implement. Two swivel gearbox assemblies are used, each comprising a first 90° gearbox rigidly attached to the implement and a second 90° gearbox that is permitted to rotate about an axis passing through one of its shafts and one of the first 90° gearbox's shaft. Because the tongue angle is variable, the drive shafts for driving the implement must take on a plurality of angles. The swiveling gearbox assemblies allow variable angles at the tongue and at the header.
Abstract:
A drive system for agricultural implements having at least one floating head and a tongue that may be disposed at various angles relative to a longitudinal angle of the implement. Two swivel gearbox assemblies are used, each comprising a first 90° gearbox rigidly attached to the implement and a second 90° gearbox that is permitted to rotate about an axis passing through one of its shafts and one of the first 90° gearbox's shaft. Because the tongue angle is variable, the drive shafts for driving the implement must take on a plurality of angles. The swiveling gearbox assemblies allow variable angles at the tongue and at the header.
Abstract:
A drive system for agricultural implements having at least one floating head and a tongue that may be disposed at various angles relative to a longitudinal angle of the implement. Two swivel gearbox assemblies are used, each comprising a first 90° gearbox rigidly attached to the implement and a second 90° gearbox that is permitted to rotate about an axis passing through one of its shafts and one of the first 90° gearbox's shaft. Because the tongue angle is variable, the drive shafts for driving the implement must take on a plurality of angles. The swiveling gearbox assemblies allow variable angles at the tongue and at the header.