摘要:
Video decoder methods and apparatus are described. In accordance with the invention, hardware decoder circuitry, e.g., intra-coded image decoding circuitry and motion vector reconstruction circuitry, is used in combination with a general purpose processor, e.g., Pentium processor, to perform video decoding operations. The video decoder hardware circuitry of the present invention is responsible for performing non-memory intensive functions. The general purpose processor or a general purpose processor operating in conjunction with a graphics processor are used to perform memory intensive video decoding operations such as motion compensated predictions. The video decoding hardware circuitry of the present invention can be implemented as a separate physical device, e.g., chip, or can be implemented on the same physical chip as a general purpose processor with which it works. By using the video decoding hardware circuitry of the present invention in combination with a CPU, a computer system's ability to perform video decoding operations can be significantly increased at little cost in terms of additional hardware.
摘要:
Methods and apparatus for implementing single instruction multiple data (SIMD) signal processing operations are described. The apparatus of the present invention include new registers and register arrays which allow data to be accessed at a word as well as sub-word or sub-register level. The registers and register arrays of the present invention may be used when implementing a system based on a SIMD architecture. Registers implemented in accordance with the present invention include a plurality of pass gates that allow an entire n-bit word stored in the register to be accessed and output as a single word or for a sub-word portion of a stored word to be accessed and output. During standard operation the registers are accessed on a word basis. However, during column access operations, e.g., when performing a transpose operation, access is performed on a sub-word basis. The ability to access the registers of the present invention on a word or sub-word level make implementing transpose and various other row/column data manipulation operations possible in a relatively straightforward manner without data buffering. In addition to the novel registers and register arrays of the present invention, various aspects of the present invention are directed to new and novel SIMD instructions, e.g., SIMD move, add, and move instructions, which support the specification of data to be processed as operands which identify rows or columns of register arrays as opposed to merely identifying registers as done with conventional commands. A transpose command is also supported.
摘要:
Methods and apparatus for performing signed saturation of binary numbers to arbitrary powers of two are described. Given an n-bit signed binary word, the methods and apparatus of the present invention perform a signed saturation to k-bits where the value of k can vary such that 1
摘要:
Edge detection methods and apparatus which utilize the dc dct differential data included in encoded images, e.g., an MPEG-2 encoded video stream, are described. Use of the dc dct differential data allows efficient methods for detecting the presence of edges within encoded images. The edge detection methods and apparatus of the present invention can be used where differential coding of the DC DCT coefficients is employed. Accordingly, the edge detection methods of the present invention are applicable to MPEG-2 encoded images as well as other differentially encoded images.
摘要:
Methods and apparatus for implementing and using a sign(x) function are described. In accordance with the present invention, the sign(x) function is implemented in hardware, e.g., by incorporating a simple circuit of the present invention into a central processing unit (CPU). By taking a hardware approach as opposed to the known software approach to implementing a sign(x) function, the present invention provides for an efficient sign(x) function implementation that is well suited for both SISD and SIMD systems. The hardware required to implement the sign(x) function in accordance with the present invention is relatively simple and allows for the sign(x) function to be determined in a single processor clock cycle. This is in sharp contrast to the plurality of processor clock cycles normally required to determine the sign(x) function in software embodiments. A processor sign(x) command is supported in embodiments where the hardware for performing the sign(x) function is incorporated into a processor. By incorporating a single sign(x) circuit into a processor a SISD sign(x) function can be supported. By duplicating the basic sign(x) hardware within a processor, in accordance with the present invention, a SIMD sign(x) function can be implemented. The sign(x) hardware and novel sign(x) processor command of the present invention, can be used to facilitate a variety of applications where the sign(x) function is encountered.
摘要:
Methods and apparatus for implementing and using a sign(x) function are described. In accordance with the present invention, the sign(x) function is implemented in hardware, e.g., by incorporating a simple circuit of the present invention into a central processing unit (CPU). By taking a hardware approach as opposed to the known software approach to implementing a sign(x) function, the present invention provides for an efficient sign(x) function implementation that is well suited for both SISD and SIMD systems. The hardware required to implement the sign(x) function in accordance with the present invention is relatively simple and allows for the sign(x) function to be determined in a single processor clock cycle. This is in sharp contrast to the plurality of processor clock cycles normally required to determine the sign(x) function in software embodiments. A processor sign(x) command is supported in embodiments where the hardware for performing the sign(x) function is incorporated into a processor. By incorporating a single sign(x) circuit into a processor a SISD sign(x) function can be supported. By duplicating the basic sign(x) hardware within a processor, in accordance with the present invention, a SIMD sign(x) function can be implemented. The sign(x) hardware and novel sign(x) processor command of the present invention, can be used to facilitate a variety of applications where the sign(x) function is encountered.