摘要:
A system and tuning method to collaboratively calibrate high voltage DAC values and Photomultiplier Tube DAC values of photomultiplier tubes of a gamma camera so that the detector produces a valid energy spectrum over the entire detector surface. A method for tuning a gamma camera having a plurality of photosensors, exposes the photosensors to scintillation photons corresponding to nuclear radiation of known energy; measures an energy output corresponding to each specific photosensor; calculates an average enemy output of all photosensors in the camera; collaboratively adjusts a DAC value corresponding to a voltage applied to a specific photosensor and a DACHV value corresponding to a high voltage applied to the camera based on the calculated average energy, energy output of each photosensor, and a target energy value corresponding to said known energy; and repeats the calibration until convergence is achieved between the average energy, energy output, and target energy.
摘要:
A system and tuning method to collaboratively calibrate high voltage DAC values and Photomultiplier Tube DAC values of photomultiplier tubes of a gamma camera so that the detector produces a valid energy spectrum over the entire detector surface. A method for tuning a gamma camera having a plurality of photosensors, exposes the photosensors to scintillation photons corresponding to nuclear radiation of known energy; measures an energy output corresponding to each specific photosensor; calculates an average enemy output of all photosensors in the camera; collaboratively adjusts a DAC value corresponding to a voltage applied to a specific photosensor and a DACHV value corresponding to a high voltage applied to the camera based on the calculated average energy, energy output of each photosensor, and a target energy value corresponding to said known energy; and repeats the calibration until convergence is achieved between the average energy, energy output, and target energy.
摘要:
In some preferred embodiments, an apparatus is provided that facilitates correction, such as, e.g., linearity correction, in imaging devices, such as, e.g., scintillation cameras. In preferred embodiments, a mask is implemented that can produce images for locating the actual position of a nuclear event based on its apparent position with high accuracy and reliability. In the preferred embodiments, the mask includes a non-uniform array of apertures that can achieve this goal.
摘要:
A method and system for calibrating a scintillation camera includes steps of constructing a pair of generic linearity coefficient (LC) matrices from a representative detector based on measurement of non-linearity; and transforming the pair of generic LC matrices according to measured pinhole locations from a lead mask to generate detector specific LC matrices.
摘要:
According to some embodiments, a multimodality diagnostic imaging system having one or more gamma cameras and a flat panel x-ray detector mounted on a common gantry to perform simultaneous FPCT and SPECT studies. In other embodiments, such systems may included EKG devices to gate said studies.
摘要:
A method and apparatus for acquiring total uniformity for a scintillation imaging apparatus are provided. A generic energy (Z) map is first obtained. The generic Zmap is then corrected for linearity by use of a dot pattern. The listmode data is used to construct an energy histogram matrix. A twin Zmap is then obtained by optimizing the lower and upper boundaries of the energy window for each pixel in relation to the average energy over the Center Field of View.
摘要:
A method for optimizing the scanning trajectory of a radiation detector device, e.g., a SPECT scanning device, about an object generally includes: obtaining object image data using a different imaging modality, e.g., a CT scanning device, determining a maximum object boundary based on the image data, calculating an optimal scan trajectory of the SPECT scanning device relative to the object based on the maximum object boundary, scanning the object with the SPECT scanning device along the optimal scan trajectory to detect gamma photons emanating from the object, from which an image can be reconstructed from the detected gamma photons. Preferably, the SPECT device includes at least two detectors arranged at a pre-selected angle relative to one another and the optimal scan trajectory minimizes the distance between the detectors and the object while maximizing the geometric efficiency of the detectors relative to the object.
摘要:
A method for optimizing the scanning trajectory of a radiation detector device, e.g., a SPECT scanning device, about an object generally includes: obtaining object image data using a different imaging modality, e.g., a CT scanning device, determining a maximum object boundary based on the image data, calculating an optimal scan trajectory of the SPECT scanning device relative to the object based on the maximum object boundary, scanning the object with the SPECT scanning device along the optimal scan trajectory to detect gamma photons emanating from the object, from which an image can be reconstructed from the detected gamma photons. Preferably, the SPECT device includes at least two detectors arranged at a pre-selected angle relative to one another and the optimal scan trajectory minimizes the distance between the detectors and the object while maximizing the geometric efficiency of the detectors relative to the object.
摘要:
A system and method provide for more accurate SPECT/CT image registration. CT data is utilized to establish a global spatial coordinate system of a common test phantom. The common test phantom is then used to obtain a set of point source nuclear images. Three-dimensional CT point source data is mapped to a two-dimensional image plane of corresponding point source data, to obtain a pair of intersecting projection cones that are used to obtain a set of detector head position correction parameters to correct detector head positioning in the CT coordinate system when obtaining SPECT projection images of the same object.
摘要:
A system and method provide for more accurate SPECT/CT image registration. CT data is utilized to establish a global spatial coordinate system of a common test phantom. The common test phantom is then used to obtain a set of point source nuclear images. Three-dimensional CT point source data is mapped to a two-dimensional image plane of corresponding point source data, to obtain a pair of intersecting projection cones that are used to obtain a set of detector head position correction parameters to correct detector head positioning in the CT coordinate system when obtaining SPECT projection images of the same object.