摘要:
A new form of pattern referred to as a fully dependent pattern or d-pattern is provided. The d-pattern captures dependence among a set of items based on a dependency test. An efficient algorithm is provided for discovering all d-patterns in data. Specifically, a linear algorithm is provided for testing whether a pattern is an d-pattern. Further, a pruning algorithm is provided that prunes the search space effectively. Still further, a level-wise algorithm for mining d-patterns is provided.
摘要:
A new form of pattern is provided, referred to as a mutual dependence pattern or m-pattern. The m-pattern captures mutual dependence among a set of items. Intuitively, the m-pattern represents a set of items that often occur together. In our experience, such m-patterns often provide great values for certain tasks, such as event correlation in event management. Further, an efficient algorithm is provided for discovering all m-patterns in data for a given minimum mutual dependence threshold. Specifically, a linear algorithm is provided for testing whether a pattern is an m-pattern. Further, a pruning algorithm is provided that prunes the search space effectively. Still further, a level-wise algorithm for mining m-patterns is provided.
摘要:
Systems and methods are described for the execution and authoring of policies that use event rates for event management. The first system addresses policy execution. Included in this system are: a controller that provides overall operational control, a grouping engine, a rate detector, and a rate diagnoser. The second system automates the construction of event rate policies based on primary information sources (e.g., topology, inventory). The components of this system include: an authoring user interface, source-specific hierarchy generators, an event group generator and hierarchy builder, and a threshold constructor.
摘要:
A technique is provided for systematically constructing one or more correlation rules for use by an event management system for managing a network with one or more computing devices. The technique comprises the following steps. First, in association with an event cache, event data representing past or historical events associated with the network of computing devices being managed by the event management system is obtained. Next, a first pattern is found or detected in the obtained event data associated with the event cache. The pattern is then classified. Then, at least one correlation rule is constructed based on the classified pattern. Lastly, in association with the event cache, the one or more events included in the pattern are replaced with a composite or cumulative event such that hierarchical patterns may be subsequently found for use in constructing further correlation rules.
摘要:
Apparata, articles and methods for discovering partially periodic temporal associations, referred to herein as p-patterns, are provided. For example, a p-pattern in computer networks might comprise five repetitions every 30 seconds of a port-down event followed by a port-up event, which in turn is followed by a random gap until the next five repetitions of these events. In one embodiment, the present invention comprises: (i) a normalization step to convert application-oriented event data into an application-independent normalized table; (ii) an algorithm for finding significant period lengths from normalized events (e.g., 30 seconds) using a Chi-squared test; and (iii) an algorithm for finding a partially periodic temporal association (e.g., port-down followed by port-up) given a known period.
摘要:
Techniques for mining or discovering one or more patterns in an input data set, wherein the input data set is characterized by attributes, comprises the following steps. First, the technique includes mapping attributes of the input data set to mapping values. Then, one or more candidate patterns are formed as groupings of two mapping values that occur within a predefined time period. Next, for each of the one or more candidate patterns, a qualification function is computed and a result of the qualification function is compared with at least one predefined threshold value. The one or more candidate patterns whose qualification function results are greater than or equal to the predefined threshold value are identified as one or more qualified patterns.
摘要:
Techniques for ordering categorical attributes so as to better visualize data are provided. In accordance with one embodiment of the invention, an ordering algorithm comprises the steps of: (a) translating the discrete ordering problem to a continuous optimization problem; (b) solving the continuous optimization problem; and (c) mapping an optimal continuous solution to the closest discrete solution.
摘要:
Systems and methods for instance counting and for the identification of a temporal pattern in an event sequence. The system addresses the use of “earliest-first” and “no-reuse” policies as criteria for the correctness of counting. The system also achieves higher performance than conventional methods by utilizing incremental computation.
摘要:
Systems and methods are provided for exploratory analysis of event messages. The invention includes a parsing engine to translate textual messages into structured event data, a selection and control engine (SCE) to provide data management and communication channels for a set of analysis methods, and viewers to support different kinds of analysis methods. The invention further includes a mechanism for viewers to exchange information, a mechanism for interactively and iteratively refining parsing rules, and a mechanism to visualize events through event graphs.
摘要:
Methods and systems are described for learning correlation rules used in event management. In one aspect of the invention, a method comprises the steps of: (a) marking one or more event groupings; (b) employing a machine learning program to learn the underlying concept of these groupings; (c) including a rule right-hand side; and (d) putting the new rule in the Rule DB. A system to implement this method may comprise components for: (1) interactive visualization and user interface control; (2) query-based learning; (3) Event DB access; and (4) correlation Rule DB access.