摘要:
An inertial sensing input apparatus is disclosed, which includes: an accelerometer module, capable of detecting accelerations with respect to a Cartesian coordinate system of X-, Y-, and Z-axes; and a gyroscope, used for detecting a rotation measured with respect to the Z-axis. By the aforesaid input apparatus, an input method can be provided which comprises steps of: (a) defining base signals with respect to each of such sensing elements; (b) detecting and determining whether Z-axis accelerations are varying; (c) enabling the input apparatus to enter a surface (2D) operating mode while no acceleration varying is detected along the Z axis; (d) enabling the input apparatus to enter a space (3D) operating mode while acceleration varying is detected along the Z axis.
摘要:
An inertial sensing input apparatus is disclosed, which includes: an accelerometer module, capable of detecting accelerations with respect to a Cartesian coordinate system of X-, Y-, and Z-axes; and a gyroscope, used for detecting a rotation measured with respect to the Z-axis. By the aforesaid input apparatus, an input method can be provided which comprises steps of: (a) zeroing each and every sensing element of the input apparatus at rest for defining base signals with respect to each of such sensing elements; (b) using a Z-axis accelerometer selected among those sensing elements to detect and determine whether Z-axis accelerations of the input apparatus measured along the Z-axis of the Cartesian coordinate system are varying; (c) enabling the input apparatus to enter a surface (2D) operating mode while no acceleration varying is detected along the Z axis, whereas an X-axis accelerometer and a Y-axis accelerometer are activated accordingly to detect an X-axis acceleration and a Y-axis acceleration in respective and thus generate an X-axis acceleration signal and a Y-axis acceleration signal correspondingly, and the same time that a gyroscope is activated to detect a rotation of the input apparatus caused when the input apparatus is moving and thus generate an angular velocity signal correspondingly for compensating the X-axis acceleration signal and the Y-axis acceleration signal; (d) enabling the input apparatus to enter a space (3D) operating mode while acceleration varying is detected along the Z axis. Hence, not only the input apparatus is freed from the limitation of operation space and is capable of compensating the unconscious rotation caused by a human operation as it is being held in a human hand, but also it is freed from the interferences caused by the electronic noises generated from the inertial sensing elements.
摘要:
An inertial input apparatus with six-axial detection ability, structured with a gyroscope and an acceleration module capable of detecting accelerations of X, Y, Z axes defined by a 3-D Cartesian coordinates, which is operable either being held to move on a planar surface or in a free space. When the inertial input apparatus is being held to move and operate on a planar surface by a user, a two-dimensional detection mode is adopted thereby that the gyroscope is used for detection rotations of the inertial input apparatus caused by unconscious rolling motions of the user and thus compensating the erroneous rotations, by which the technical disadvantages of prior-art inertial input apparatuses equipped with only accelerometer can be overcame and thus control smoothness of using the input apparatus is enhanced.
摘要:
An inertial input apparatus with six-axial detection ability, structured with a gyroscope and an acceleration module capable of detecting accelerations of X, Y, Z axes defined by a 3-D Cartesian coordinates, which is operable either being held to move on a planar surface or in a free space. When the inertial input apparatus is being held to move and operate on a planar surface by a user, a two-dimensional detection mode is adopted thereby that the gyroscope is used for detection rotations of the inertial input apparatus caused by unconscious rolling motions of the user and thus compensating the erroneous rotations, by which the technical disadvantages of prior-art inertial input apparatuses equipped with only accelerometer can be overcame and thus control smoothness of using the input apparatus is enhanced.
摘要:
An inertial input apparatus with six-axial detection ability, structured with a gyroscope and an acceleration module capable of detecting accelerations of X, Y, Z axes defined by a 3-D Cartesian coordinates, which is operable either being held to move on a planar surface or in a free space. When the inertial input apparatus is being held to move and operate on a planar surface by a user, a two-dimensional detection mode is adopted thereby that the gyroscope is used for detection rotations of the inertial input apparatus caused by unconscious rolling motions of the user and thus compensating the erroneous rotations, by which the technical disadvantages of prior-art inertial input apparatuses equipped with only accelerometer can be overcame and thus control smoothness of using the input apparatus is enhanced.
摘要:
A pointing device is disclosed in the present invention, which comprises a planar sensing unit, an inertial sensing unit and a controller unit. The planar sensing unit is capable of detecting a movement of the point device moving on a planar surface and generating a planar sensing signal accordingly. The inertial sensing unit is capable of detecting a movement of the point device while it is moving in a free space and thus generating an inertial sensing signal accordingly. The controller unit is coupled to the planar sensing unit and the inertial sensing unit for enabling the same to receive and process the planar sensing signal and the inertial sensing signal. In a preferred aspect, the planar sensing unit is capable of detecting and determining whether the pointing device is operating on a surface or in a free space for selectively enabling the pointing device to operate in a mode of two-dimensional detection or in a mode of three-dimensional detection such that users can apply the pointing device freely without being restricted by a surface or a space, and thus not only the usage convenience of the pointing device is enhanced, but also the applications thereof are broadened.
摘要:
An inertial input apparatus with six-axial detection ability, structured with a gyroscope and an acceleration module capable of detecting accelerations of X, Y, Z axes defined by a 3-D Cartesian coordinates, which is operable either being held to move on a planar surface or in a free space. When the inertial input apparatus is being held to move and operate on a planar surface by a user, a two-dimensional detection mode is adopted thereby that the gyroscope is used for detection rotations of the inertial input apparatus caused by unconscious rolling motions of the user and thus compensating the erroneous rotations, by which the technical disadvantages of prior-art inertial input apparatuses equipped with only accelerometer can be overcame and thus control smoothness of using the input apparatus is enhanced. In addition, when the inertial input apparatus is being held to operate in a free space by a user, a three-dimensional detection mode is adopted for enabling the inertial input apparatus to detect movements of the same with respect to at most six axes defined by the 3-D Cartesian coordinates of X, Y, Z axes, that is, the rotations with respect to the X, Y, Z axes and the movements with respect to the X, Y, Z axes, and thus the inertial input apparatus is adapted to be used as an input device for interactive computer games, In a preferred aspect, when the inertial input apparatus is acting as a 3-D mouse suitable to be used for briefing or in a remote control environment, only the detections with respect to the X and Y axes acquired by the accelerometer along with that of the gyroscope are adopts and used as control signals for controlling cursor displayed on a screen, but the detection with respect to the Z-axis acquired by the accelerometer is used as a switch signal for directing the inertial input apparatus to switch between its two-dimensional detection mode and three-dimensional detection mode.
摘要:
A pointing device is disclosed in the present invention, which comprises a planar sensing unit, an inertial sensing unit and a controller unit. The planar sensing unit is capable of detecting a movement of the point device moving on a planar surface and generating a planar sensing signal accordingly. The inertial sensing unit is capable of detecting a movement of the point device while it is moving in a free space and thus generating an inertial sensing signal accordingly. The controller unit is coupled to the planar sensing unit and the inertial sensing unit for enabling the same to receive and process the planar sensing signal and the inertial sensing signal. In a preferred aspect, the planar sensing unit is capable of detecting and determining whether the pointing device is operating on a surface or in a free space for selectively enabling the pointing device to operate in a mode of two-dimensional detection or in a mode of three-dimensional detection such that users can apply the pointing device freely without being restricted by a surface or a space, and thus not only the usage convenience of the pointing device is enhanced, but also the applications thereof are broadened.
摘要:
The present invention relates to an online interactive multimedia system and the transmission method, that the interactive system is adapted to be applied by users of a plurality of remote ends for enabling users at his/her remote end to interact with each other in an online fashion, and each remote end comprises: a at least a micro inertial sensing module, a micro processing device, an audio/video device, a network device, and a displaying device; wherein each micro inertial sensing module is capable of detecting and measuring motions of a user operating the remote end so as to generate gesture signals accordingly; the micro processing device is used for receiving/transmitting and processing audio/video as well as the gesture signals from/to other remote ends in an online fashion, while using the processed signals to control a software arranged in the online interactive multimedia system for enabling the displaying device to display images accordingly; the audio/video device is used for providing real-time audio/video service between the remote end and another remote end connected thereto through a network; and the network device, for connecting the remote end to a network system for enabling the remote end to transmit/receive audio/video and the gesture signals to/from another. remote ends.
摘要:
The present invention discloses a system for human and machine interface. The system includes a 3-dimensional (3D) image capture device, for capturing a gesture of a motion object in a period of time; a hand-held inertial device (HHID), for transmitting a control signal; and a computing device. The computing device includes a system integration and GUI module, for compensating the control signal according to an image signal corresponding to the motion object, to generate a compensated control signal.