RECOMMENDER SYSTEM WITH FAST MATRIX FACTORIZATION USING INFINITE DIMENSIONS
    1.
    发明申请
    RECOMMENDER SYSTEM WITH FAST MATRIX FACTORIZATION USING INFINITE DIMENSIONS 有权
    使用无限尺寸的快速矩阵拟合的推荐系统

    公开(公告)号:US20090299996A1

    公开(公告)日:2009-12-03

    申请号:US12331346

    申请日:2008-12-09

    IPC分类号: G06F17/30

    CPC分类号: G06F17/30867 G06F17/16

    摘要: Systems and methods are disclosed for generating a recommendation by performing collaborative filtering using an infinite dimensional matrix factorization; generating one or more recommendations using the collaborative filtering; and displaying the recommendations to a user.

    摘要翻译: 公开了用于通过使用无限维矩阵分解进行协同过滤来产生推荐的系统和方法; 使用协同过滤生成一个或多个建议; 并向用户显示建议。

    Systems and methods for generating predictive matrix-variate T models
    2.
    发明授权
    Systems and methods for generating predictive matrix-variate T models 有权
    用于生成预测矩阵变量T模型的系统和方法

    公开(公告)号:US07870083B2

    公开(公告)日:2011-01-11

    申请号:US11869886

    申请日:2007-10-10

    IPC分类号: G06F15/18 G06F15/00

    CPC分类号: G06N99/005 G06K9/62

    摘要: Systems and methods are disclosed to predict one or more missing elements from a partially-observed matrix by receiving one or more user item ratings; generating a model parameterized by matrices U, S, V; applying the model to display an item based on one or more predicted missing elements; and applying the model at run-time and determining UiTSVj.

    摘要翻译: 公开了系统和方法以通过接收一个或多个用户项目评级来从部分观察到的矩阵中预测一个或多个缺失元素; 生成由矩阵U,S,V参数化的模型; 应用所述模型以基于一个或多个预测的缺失元素显示项目; 并在运行时应用模型并确定UiTSVj。

    Recommender system with fast matrix factorization using infinite dimensions
    5.
    发明授权
    Recommender system with fast matrix factorization using infinite dimensions 有权
    推荐系统采用无限维矩阵分解

    公开(公告)号:US08131732B2

    公开(公告)日:2012-03-06

    申请号:US12331346

    申请日:2008-12-09

    IPC分类号: G06F7/00 G06F17/30

    CPC分类号: G06F17/30867 G06F17/16

    摘要: A system is disclosed with a collaborative filtering engine to predict an active user's ratings/interests/preferences on a set of new products/items. The predictions are based on an analysis the database containing the historical data of many users' ratings/interests/preferences on a large set of products/items.

    摘要翻译: 公开了一种具有协作过滤引擎的系统,以预测一组新产品/项目上的主动用户的评级/兴趣/偏好。 这些预测是基于对包含大量产品/项目的许多用户评级/兴趣/偏好的历史数据的数据库的分析。

    Processing high-dimensional data via EM-style iterative algorithm
    7.
    发明授权
    Processing high-dimensional data via EM-style iterative algorithm 有权
    通过EM型迭代算法处理高维数据

    公开(公告)号:US08099381B2

    公开(公告)日:2012-01-17

    申请号:US12199912

    申请日:2008-08-28

    IPC分类号: G06F7/60 G06F17/10

    CPC分类号: G06F17/30592

    摘要: Systems and methods are disclosed for factorizing high-dimensional data by simultaneously capturing factors for all data dimensions and their correlations in a factor model, wherein the factor model provides a parsimonious description of the data; and generating a corresponding loss function to evaluate the factor model.

    摘要翻译: 公开了系统和方法,用于通过在因子模型中同时捕获所有数据维及其相关性的因子来分解高维数据,其中因子模型提供数据的简约描述; 并产生相应的损失函数来评估因子模型。

    Active feature probing using data augmentation
    8.
    发明授权
    Active feature probing using data augmentation 有权
    使用数据增加的主动特征探测

    公开(公告)号:US07958064B2

    公开(公告)日:2011-06-07

    申请号:US11869892

    申请日:2007-10-10

    IPC分类号: G06F15/18

    CPC分类号: H04L41/5061 H04L41/5074

    摘要: Systems and methods are disclosed that performs active feature probing using data augmentation. Active feature probing is a means of actively gathering information when the existing information is inadequate for decision making. The data augmentation technique generates factitious data which complete the existing information. Using the factitious data, the system is able to estimate the reliability of classification, and determine the most informative feature to probe, then gathers the additional information. The features are sequentially probed until the system has adequate information to make the decision.

    摘要翻译: 公开了使用数据增加来执行主动特征探测的系统和方法。 主动特征探测是当现有信息不足以决策时积极收集信息的一种手段。 数据增加技术生成完成现有信息的数据。 使用事实数据,系统能够估计分类的可靠性,并确定最具信息性的特征进行探测,然后收集附加信息。 这些功能被依次探测,直到系统有足够的信息作出决定。

    SYSTEMS AND METHODS FOR RESOLUTION-INVARIANT IMAGE REPRESENTATION
    9.
    发明申请
    SYSTEMS AND METHODS FOR RESOLUTION-INVARIANT IMAGE REPRESENTATION 有权
    用于分辨率 - 不变图像表示的系统和方法

    公开(公告)号:US20100124383A1

    公开(公告)日:2010-05-20

    申请号:US12469098

    申请日:2009-05-20

    IPC分类号: G06K9/32

    CPC分类号: G06T3/4053

    摘要: Systems and methods are disclosed for generating super resolution images by building a set of multi-resolution bases from one or more training images; estimating a sparse resolution-invariant representation of an image, and reconstructing one or more missing patches at any resolution level.

    摘要翻译: 公开了用于通过从一个或多个训练图像构建一组多分辨率基底来产生超分辨率图像的系统和方法; 估计图像的稀疏分辨率不变表示,以及在任何分辨率级别重建一个或多个丢失的斑点。

    Social network analysis with prior knowledge and non-negative tensor factorization
    10.
    发明授权
    Social network analysis with prior knowledge and non-negative tensor factorization 有权
    社会网络分析与先验知识和非负张量分解

    公开(公告)号:US08346708B2

    公开(公告)日:2013-01-01

    申请号:US12469043

    申请日:2009-05-20

    IPC分类号: G06F9/44 G06N7/02 G06N7/06

    CPC分类号: G06Q30/02

    摘要: Systems and methods are disclosed to analyze a social network by generating a data tensor from social networking data; applying a non-negative tensor factorization (NTF) with user prior knowledge and preferences to generate a core tensor and facet matrices; and rendering information to social networking users based on the core tensor and facet matrices.

    摘要翻译: 公开了通过从社交网络数据生成数据张量来分析社交网络的系统和方法; 应用具有用户先验知识和偏好的非负张量因子分解(NTF)来生成核心张量和小平面矩阵; 并基于核心张量和面矩阵将信息呈现给社交网络用户。