Social network analysis with prior knowledge and non-negative tensor factorization
    1.
    发明授权
    Social network analysis with prior knowledge and non-negative tensor factorization 有权
    社会网络分析与先验知识和非负张量分解

    公开(公告)号:US08346708B2

    公开(公告)日:2013-01-01

    申请号:US12469043

    申请日:2009-05-20

    IPC分类号: G06F9/44 G06N7/02 G06N7/06

    CPC分类号: G06Q30/02

    摘要: Systems and methods are disclosed to analyze a social network by generating a data tensor from social networking data; applying a non-negative tensor factorization (NTF) with user prior knowledge and preferences to generate a core tensor and facet matrices; and rendering information to social networking users based on the core tensor and facet matrices.

    摘要翻译: 公开了通过从社交网络数据生成数据张量来分析社交网络的系统和方法; 应用具有用户先验知识和偏好的非负张量因子分解(NTF)来生成核心张量和小平面矩阵; 并基于核心张量和面矩阵将信息呈现给社交网络用户。

    SOCIAL NETWORK ANALYSIS WITH PRIOR KNOWLEDGE AND NON-NEGATIVE TENSOR FACTORIZATION
    2.
    发明申请
    SOCIAL NETWORK ANALYSIS WITH PRIOR KNOWLEDGE AND NON-NEGATIVE TENSOR FACTORIZATION 有权
    具有先前知识和非负性传感器参数的社会网络分析

    公开(公告)号:US20100185578A1

    公开(公告)日:2010-07-22

    申请号:US12469043

    申请日:2009-05-20

    IPC分类号: G06N7/02 G06N5/02 G06F17/10

    CPC分类号: G06Q30/02

    摘要: Systems and methods are disclosed to analyze a social network by generating a data tensor from social networking data; applying a non-negative tensor factorization (NTF) with user prior knowledge and preferences to generate a core tensor and facet matrices; and rendering information to social networking users based on the core tensor and facet matrices.

    摘要翻译: 公开了通过从社交网络数据生成数据张量来分析社交网络的系统和方法; 应用具有用户先验知识和偏好的非负张量因子分解(NTF)来生成核心张量和小平面矩阵; 并基于核心张量和面矩阵将信息呈现给社交网络用户。

    Processing high-dimensional data via EM-style iterative algorithm
    5.
    发明授权
    Processing high-dimensional data via EM-style iterative algorithm 有权
    通过EM型迭代算法处理高维数据

    公开(公告)号:US08099381B2

    公开(公告)日:2012-01-17

    申请号:US12199912

    申请日:2008-08-28

    IPC分类号: G06F7/60 G06F17/10

    CPC分类号: G06F17/30592

    摘要: Systems and methods are disclosed for factorizing high-dimensional data by simultaneously capturing factors for all data dimensions and their correlations in a factor model, wherein the factor model provides a parsimonious description of the data; and generating a corresponding loss function to evaluate the factor model.

    摘要翻译: 公开了系统和方法,用于通过在因子模型中同时捕获所有数据维及其相关性的因子来分解高维数据,其中因子模型提供数据的简约描述; 并产生相应的损失函数来评估因子模型。

    Multiple-document summarization using document clustering
    6.
    发明授权
    Multiple-document summarization using document clustering 有权
    使用文档聚类的多文档摘要

    公开(公告)号:US08402369B2

    公开(公告)日:2013-03-19

    申请号:US12199104

    申请日:2008-08-27

    IPC分类号: G06F17/00

    CPC分类号: G06F17/30719

    摘要: Systems and methods are disclosed for summarizing multiple documents by generating a model of the documents as a mixture of document clusters, each document in turn having a mixture of sentences, wherein the model simultaneously representing summarization information and document cluster structure; and determining a loss function for evaluating the model and optimizing the model.

    摘要翻译: 公开了系统和方法,用于通过将文档的模型作为文档集合的混合来生成多个文档,每个文档又具有句子的混合,其中模型同时表示摘要信息和文档集​​群结构; 并确定用于评估模型和优化模型的损失函数。

    Finding communities and their evolutions in dynamic social network
    7.
    发明授权
    Finding communities and their evolutions in dynamic social network 有权
    在动态社交网络中寻找社区及其演变

    公开(公告)号:US08090665B2

    公开(公告)日:2012-01-03

    申请号:US12277305

    申请日:2008-11-25

    IPC分类号: G06Q99/00

    摘要: Systems and methods are disclosed to find dynamic social networks by applying a dynamic stochastic block model to generate one or more dynamic social networks, wherein the model simultaneously captures communities and their evolutions, and inferring best-fit parameters for the dynamic stochastic model with online learning and offline learning.

    摘要翻译: 公开了系统和方法以通过应用动态随机块模型来生成一个或多个动态社交网络来发现动态社交网络,其中模型同时捕获社区及其演化,并且通过在线学习推导动态随机模型的最佳拟合参数 和离线学习。

    MULTIPLE-DOCUMENT SUMMARIZATION USING DOCUMENT CLUSTERING
    9.
    发明申请
    MULTIPLE-DOCUMENT SUMMARIZATION USING DOCUMENT CLUSTERING 有权
    使用文件聚类的多文档概述

    公开(公告)号:US20090300486A1

    公开(公告)日:2009-12-03

    申请号:US12199104

    申请日:2008-08-27

    IPC分类号: G06F17/21

    CPC分类号: G06F17/30719

    摘要: Systems and methods are disclosed for summarizing multiple documents by generating a model of the documents as a mixture of document clusters, each document in turn having a mixture of sentences, wherein the model simultaneously representing summarization information and document cluster structure; and determining a loss function for evaluating the model and optimizing the model.

    摘要翻译: 公开了系统和方法,用于通过将文档的模型作为文档集合的混合来生成多个文档,每个文档又具有句子的混合,其中模型同时表示摘要信息和文档集​​群结构; 并确定用于评估模型和优化模型的损失函数。

    Systems and Methods for Processing High-Dimensional Data
    10.
    发明申请
    Systems and Methods for Processing High-Dimensional Data 有权
    用于处理高维数据的系统和方法

    公开(公告)号:US20090299705A1

    公开(公告)日:2009-12-03

    申请号:US12199912

    申请日:2008-08-28

    IPC分类号: G06F7/60 G06F17/10

    CPC分类号: G06F17/30592

    摘要: Systems and methods are disclosed for factorizing high-dimensional data by simultaneously capturing factors for all data dimensions and their correlations in a factor model, wherein the factor model provides a parsimonious description of the data; and generating a corresponding loss function to evaluate the factor model.

    摘要翻译: 公开了系统和方法,用于通过在因子模型中同时捕获所有数据维及其相关性的因子来分解高维数据,其中因子模型提供数据的简约描述; 并产生相应的损失函数来评估因子模型。