摘要:
A diffraction device using a photonic crystal includes a diffraction grating, which has a period and periodically divides electromagnetic waves, and an input medium and an output medium, which contact the diffraction grating. The input medium is air, and the output medium is a one-dimensional layer having a periodic characteristic in a single direction (Z axis direction). The photonic crystal is formed by a periodic multilayer film having a period corresponding to the sum of the thickness of a first substance and the thickness of a second substance, which are superimposed. The diffraction device drastically decreases the resolution corresponding to the difference of the separated frequencies.
摘要:
A sensor for sensing the concentration of a vapor of a volatile liquid in a gas is disclosed. The sensor has a dry-transducer temperature sensor and a wet-transducer temperature sensor. The wet transducer-temperature sensor is covered by a non-woven, non-flaking, liquid-permeable material to allow the liquid to pass from a source to about the wet-transducer temperature sensor and vaporize when the gas is not saturated with the vapor. The vaporization of the volatile liquid causes the temperature at the wet-transducer temperature sensor to have a steady-state temperature lower than the reference temperature measured by the dry-transducer temperature sensor. The difference in the temperature measured by the two temperature sensors being determinable to determine the concentration of the vapor in the gas. In an embodiment, the non-woven, non-flaking, liquid-permeable material is a porous membrane. In another embodiment, it is a gel.
摘要:
This is a non-invasive method for measuring pulmonary blood flow and lung tissue volume, called airway thermal volume consisting of dynamic registration of respiratory heat losses in ventilatory loading and/or humidity and temperature changes of the inspired gas. Pulmonary blood flow and airway tissue volume are calculated by solving the differential equation for nonsteady-state heat and mass exchange between the lungs and the environment. The lungs fraction as natural conditioner of the inspired air, having an inner heat source (pulmonary blood flow) and an outgoing heat stream calculated by measuring the volume ventilation and the temperature and humidity of inspired and expired air. Alterations of the baseline steady-state condition of lung respiratory heat exchange with the environment by changes in ventilation lead to achievement of a new steady-state condition where the heat stream from the lungs into environment is balanced by the heat stream from the circulation into the lung tissue. The maximal temperature of the expired air is taken as an initial relative value of lung tissue temperature, so that the quantity of maximal expired temperature change between two different steady-state conditions of lung heat exchange is proportional to the pulmonary blood flow, while the rate at which the new steady-state is achieved is proportional to the quantity of tissue mass. A probe for carrying out measurements includes a low-inertial device for temperature and humidity measurements of the expired and inspired air located in the middle of the airstream near the entrance to the upper respiratory tract, combined with a device for gas volumetric measurements and valves dividing in- and outflowing air for minimizing errors in air temperature and humidity measurements.
摘要:
Presented is a polarizing element that absorbs a component of a specific wavelength from electromagnetic waves passing therethrough and thus produces polarized light. The polarizing element includes a transparent substrate that has a plurality of first recesses formed in a surface of the transparent substrate. The first recesses extend parallel to one another with a predetermined spacing therebetween in a direction orthogonal to the surface of the transparent substrate. The polarizing elements further include thin-film-shaped conductive bodies formed on side surfaces of the first recesses.
摘要:
This is a non-invasive method for measuring pulmonary blood flow and lung tissue volume, called airway thermal volume consisting of dynamic registration of respiratory heat losses in ventilatory loading and/or humidity and temperature changes of the inspired gas. Pulmonary blood flow and airway tissue volume are calculated by solving the differential equation for non-steady-state heat and mass exchange between the lungs and the environment. The lungs fraction as natural conditioner of the inspired air, having an inner heat source (pulmonary blood flow) and an outgoing heat stream calculated by measuring the volume ventilation and the temperature and humidity of inspired and expired air. Alterations of the baseline steady-state condition of lung respiratory heat exchange with the environment by changes in ventilation lead to achievement of a new steady-state condition where the heat stream from the lungs into environment is balanced by the heat stream from the circulation into the lung tissue. The maximal temperature of the expired air is taken as an initial relative value of lung tissue temperature, so that the quantity of maximal expired temperature change between two different steady-state conditions of lung heat exchange is proportional to the pulmonary blood flow, while the rate at which the new steady-state is achieved is proportional to the quantity of tissue mass. A probe for carrying out measurements includes a low-inertial device for temperature and humidity measurements of the expired and inspired air located in the middle of the airstream near the entrance to the upper respiratory tract, combined with a device for gas volumetric measurements and valves dividing in- and outflowing air for minimizing errors in air temperature and humidity measurements.