摘要:
A photonic crystal optical waveguide includes a optical waveguide portion having a core made of a photonic crystal with a structure having a periodic refractive index in at least one direction perpendicular to a propagation direction of guided light and having a uniform refractive index in the propagation direction of the guided light, and a cladding arranged in contact with the core, in order to confine the guided light in the core, and an incident-side phase modulation portion arranged in close proximity or in contact with an incident surface of the core.
摘要:
An optical element according to the invention constituted by a multilayer structure having a periodic structural portion as at least one region constituted by repetition of a predetermined period, wherein an end surface of the multilayer structure not parallel to layer surfaces of the multilayer structure is used as a light input surface whereas one or each of opposite surfaces of the multilayer structure parallel to the layer surfaces is used as a light output surface. There is an intermediate layer between a medium and a surface of the multilayer structure, the intermediate layer having a refractive index less than the refractive index of the medium. The periodic structural portion of the multilayer structure can be regarded as a one-dimensional photonic crystal. Refracted light from the one-dimensional photonic crystal has good directivity and the direction of the refracted light has strong dependence on wavelength. When this wavelength dependence property is used, a spectroscopic device or a polarized light separating device of high resolution can be achieved without increase in device size.
摘要:
In a waveguide element using a photonic crystal including a core formed of a photonic crystal having a refractive index periodicity in at least two directions perpendicular to a propagation direction of an electromagnetic wave and a cladding arranged in contact with the core in order to confine the electromagnetic wave in the core, an incident side phase modulation portion is provided for allowing an electromagnetic wave that is coupled to a band on or near a Brillouin zone boundary in a photonic band structure in the core and propagates in the core to enter the core.
摘要:
In a waveguide element using a photonic crystal including a core formed of a photonic crystal having a refractive index periodicity in at least two directions perpendicular to a propagation direction of an electromagnetic wave and a cladding arranged in contact with the core in order to confine the electromagnetic wave in the core, an incident side phase modulation portion is provided for allowing an electromagnetic wave that is coupled to a band on or near a Brillouin zone boundary in a photonic band structure in the core and propagates in the core to enter the core.
摘要:
An optical element, composed of an one-dimensional photonic crystal of a triangular prism shape and a multilayer film and a phase modulation unit are used together, with the phase modulation unit adjacent or abutting to a light input end surface of the optical element. Input light is phase-modulated by the phase modulation unit in the same period and direction as those of photonic crystal so that only specific high-order band light can be propagated through the optical element. When this optical element is formed in an optical waveguide, a small-size spectroscopic device having high resolving power can be provided.
摘要:
An optical element according to the invention uses a thin film-like two-dimensional photonic crystal having a structure of periodic repetition in two directions perpendicular to each other. When the two periodic directions are Y-axis and Z-axis directions, opposite surfaces of the photonic crystal structure perpendicular to the Z-axis direction and parallel to the Y-axis direction are used as a light input surface and a light output surface respectively. The direction of movement of light rays incident onto the light input surface is decided so that it is parallel to the YZ plane and inclined at a predetermined inclination angle to the Z-axis direction.
摘要:
In the invention, light incident onto an end surface of one-dimensional photonic crystal is phase-modulated in the same period and direction as those of the photonic crystal to thereby propagate only specific high-order band light in the photonic crystal. That is, a phase modulation unit for generating phase-modulated wave having the same period as that of the periodic structure is disposed adjacent or close to a light incident surface of the periodic structure.
摘要:
A wavelength separator includes a one-dimensional photonic crystal structure formed by providing a plurality of grooves in parallel with one another at uniform intervals in a homogeneous medium, and has an incident end face formed obliquely with respect to a direction in which the grooves extend, and an output end face formed approximately perpendicular to the incident end face.
摘要:
A photonic crystal waveguide and a homogeneous medium waveguide for enabling a steep bend and arrangement at an arbitrary angle with low propagation loss. A photonic crystal waveguide has a core formed by a photonic crystal having periodicity in the Y-direction. Electromagnetic wave is propagated by a band on the Brillouin zone boundary of the photonic band structure of the core. A side face of the core parallel to the Y-direction is in contact with a homogeneous medium having a refractive index of ns, and the condition of λ0/ns>aλ/(λ2/4+a2)0.5 is satisfied when the wavelength in vacuum of the electromagnetic wave is represented by λ0, the period of the photonic crystal is represented by a, and the period in the XZ-plane direction of the wave propagated through the core is represented by λ.
摘要:
An optical path conversion element includes a photonic crystal exhibiting periodicity of refractive index in one direction and using as an incident end face one of end faces substantially parallel with the periodicity direction of refractive index and an exit end face opposite the incident end face, an incident part for passing an incident light through the incident end face such that a propagation light is generated in the photonic crystal by a band on a Brillouin zone boundary, and a device for changing a photonic band structure of the photonic crystal and/or a device for changing a propagation optical path length that is a distance from the incident end face to the exit end face.